spbtrs.c
Go to the documentation of this file.
00001 /* spbtrs.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 
00020 /* Subroutine */ int spbtrs_(char *uplo, integer *n, integer *kd, integer *
00021         nrhs, real *ab, integer *ldab, real *b, integer *ldb, integer *info)
00022 {
00023     /* System generated locals */
00024     integer ab_dim1, ab_offset, b_dim1, b_offset, i__1;
00025 
00026     /* Local variables */
00027     integer j;
00028     extern logical lsame_(char *, char *);
00029     logical upper;
00030     extern /* Subroutine */ int stbsv_(char *, char *, char *, integer *, 
00031             integer *, real *, integer *, real *, integer *), xerbla_(char *, integer *);
00032 
00033 
00034 /*  -- LAPACK routine (version 3.2) -- */
00035 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00036 /*     November 2006 */
00037 
00038 /*     .. Scalar Arguments .. */
00039 /*     .. */
00040 /*     .. Array Arguments .. */
00041 /*     .. */
00042 
00043 /*  Purpose */
00044 /*  ======= */
00045 
00046 /*  SPBTRS solves a system of linear equations A*X = B with a symmetric */
00047 /*  positive definite band matrix A using the Cholesky factorization */
00048 /*  A = U**T*U or A = L*L**T computed by SPBTRF. */
00049 
00050 /*  Arguments */
00051 /*  ========= */
00052 
00053 /*  UPLO    (input) CHARACTER*1 */
00054 /*          = 'U':  Upper triangular factor stored in AB; */
00055 /*          = 'L':  Lower triangular factor stored in AB. */
00056 
00057 /*  N       (input) INTEGER */
00058 /*          The order of the matrix A.  N >= 0. */
00059 
00060 /*  KD      (input) INTEGER */
00061 /*          The number of superdiagonals of the matrix A if UPLO = 'U', */
00062 /*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0. */
00063 
00064 /*  NRHS    (input) INTEGER */
00065 /*          The number of right hand sides, i.e., the number of columns */
00066 /*          of the matrix B.  NRHS >= 0. */
00067 
00068 /*  AB      (input) REAL array, dimension (LDAB,N) */
00069 /*          The triangular factor U or L from the Cholesky factorization */
00070 /*          A = U**T*U or A = L*L**T of the band matrix A, stored in the */
00071 /*          first KD+1 rows of the array.  The j-th column of U or L is */
00072 /*          stored in the j-th column of the array AB as follows: */
00073 /*          if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j; */
00074 /*          if UPLO ='L', AB(1+i-j,j)    = L(i,j) for j<=i<=min(n,j+kd). */
00075 
00076 /*  LDAB    (input) INTEGER */
00077 /*          The leading dimension of the array AB.  LDAB >= KD+1. */
00078 
00079 /*  B       (input/output) REAL array, dimension (LDB,NRHS) */
00080 /*          On entry, the right hand side matrix B. */
00081 /*          On exit, the solution matrix X. */
00082 
00083 /*  LDB     (input) INTEGER */
00084 /*          The leading dimension of the array B.  LDB >= max(1,N). */
00085 
00086 /*  INFO    (output) INTEGER */
00087 /*          = 0:  successful exit */
00088 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00089 
00090 /*  ===================================================================== */
00091 
00092 /*     .. Local Scalars .. */
00093 /*     .. */
00094 /*     .. External Functions .. */
00095 /*     .. */
00096 /*     .. External Subroutines .. */
00097 /*     .. */
00098 /*     .. Intrinsic Functions .. */
00099 /*     .. */
00100 /*     .. Executable Statements .. */
00101 
00102 /*     Test the input parameters. */
00103 
00104     /* Parameter adjustments */
00105     ab_dim1 = *ldab;
00106     ab_offset = 1 + ab_dim1;
00107     ab -= ab_offset;
00108     b_dim1 = *ldb;
00109     b_offset = 1 + b_dim1;
00110     b -= b_offset;
00111 
00112     /* Function Body */
00113     *info = 0;
00114     upper = lsame_(uplo, "U");
00115     if (! upper && ! lsame_(uplo, "L")) {
00116         *info = -1;
00117     } else if (*n < 0) {
00118         *info = -2;
00119     } else if (*kd < 0) {
00120         *info = -3;
00121     } else if (*nrhs < 0) {
00122         *info = -4;
00123     } else if (*ldab < *kd + 1) {
00124         *info = -6;
00125     } else if (*ldb < max(1,*n)) {
00126         *info = -8;
00127     }
00128     if (*info != 0) {
00129         i__1 = -(*info);
00130         xerbla_("SPBTRS", &i__1);
00131         return 0;
00132     }
00133 
00134 /*     Quick return if possible */
00135 
00136     if (*n == 0 || *nrhs == 0) {
00137         return 0;
00138     }
00139 
00140     if (upper) {
00141 
00142 /*        Solve A*X = B where A = U'*U. */
00143 
00144         i__1 = *nrhs;
00145         for (j = 1; j <= i__1; ++j) {
00146 
00147 /*           Solve U'*X = B, overwriting B with X. */
00148 
00149             stbsv_("Upper", "Transpose", "Non-unit", n, kd, &ab[ab_offset], 
00150                     ldab, &b[j * b_dim1 + 1], &c__1);
00151 
00152 /*           Solve U*X = B, overwriting B with X. */
00153 
00154             stbsv_("Upper", "No transpose", "Non-unit", n, kd, &ab[ab_offset], 
00155                      ldab, &b[j * b_dim1 + 1], &c__1);
00156 /* L10: */
00157         }
00158     } else {
00159 
00160 /*        Solve A*X = B where A = L*L'. */
00161 
00162         i__1 = *nrhs;
00163         for (j = 1; j <= i__1; ++j) {
00164 
00165 /*           Solve L*X = B, overwriting B with X. */
00166 
00167             stbsv_("Lower", "No transpose", "Non-unit", n, kd, &ab[ab_offset], 
00168                      ldab, &b[j * b_dim1 + 1], &c__1);
00169 
00170 /*           Solve L'*X = B, overwriting B with X. */
00171 
00172             stbsv_("Lower", "Transpose", "Non-unit", n, kd, &ab[ab_offset], 
00173                     ldab, &b[j * b_dim1 + 1], &c__1);
00174 /* L20: */
00175         }
00176     }
00177 
00178     return 0;
00179 
00180 /*     End of SPBTRS */
00181 
00182 } /* spbtrs_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:12