sormhr.c
Go to the documentation of this file.
00001 /* sormhr.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 static integer c_n1 = -1;
00020 static integer c__2 = 2;
00021 
00022 /* Subroutine */ int sormhr_(char *side, char *trans, integer *m, integer *n, 
00023         integer *ilo, integer *ihi, real *a, integer *lda, real *tau, real *
00024         c__, integer *ldc, real *work, integer *lwork, integer *info)
00025 {
00026     /* System generated locals */
00027     address a__1[2];
00028     integer a_dim1, a_offset, c_dim1, c_offset, i__1[2], i__2;
00029     char ch__1[2];
00030 
00031     /* Builtin functions */
00032     /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
00033 
00034     /* Local variables */
00035     integer i1, i2, nb, mi, nh, ni, nq, nw;
00036     logical left;
00037     extern logical lsame_(char *, char *);
00038     integer iinfo;
00039     extern /* Subroutine */ int xerbla_(char *, integer *);
00040     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
00041             integer *, integer *);
00042     integer lwkopt;
00043     logical lquery;
00044     extern /* Subroutine */ int sormqr_(char *, char *, integer *, integer *, 
00045             integer *, real *, integer *, real *, real *, integer *, real *, 
00046             integer *, integer *);
00047 
00048 
00049 /*  -- LAPACK routine (version 3.2) -- */
00050 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00051 /*     November 2006 */
00052 
00053 /*     .. Scalar Arguments .. */
00054 /*     .. */
00055 /*     .. Array Arguments .. */
00056 /*     .. */
00057 
00058 /*  Purpose */
00059 /*  ======= */
00060 
00061 /*  SORMHR overwrites the general real M-by-N matrix C with */
00062 
00063 /*                  SIDE = 'L'     SIDE = 'R' */
00064 /*  TRANS = 'N':      Q * C          C * Q */
00065 /*  TRANS = 'T':      Q**T * C       C * Q**T */
00066 
00067 /*  where Q is a real orthogonal matrix of order nq, with nq = m if */
00068 /*  SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of */
00069 /*  IHI-ILO elementary reflectors, as returned by SGEHRD: */
00070 
00071 /*  Q = H(ilo) H(ilo+1) . . . H(ihi-1). */
00072 
00073 /*  Arguments */
00074 /*  ========= */
00075 
00076 /*  SIDE    (input) CHARACTER*1 */
00077 /*          = 'L': apply Q or Q**T from the Left; */
00078 /*          = 'R': apply Q or Q**T from the Right. */
00079 
00080 /*  TRANS   (input) CHARACTER*1 */
00081 /*          = 'N':  No transpose, apply Q; */
00082 /*          = 'T':  Transpose, apply Q**T. */
00083 
00084 /*  M       (input) INTEGER */
00085 /*          The number of rows of the matrix C. M >= 0. */
00086 
00087 /*  N       (input) INTEGER */
00088 /*          The number of columns of the matrix C. N >= 0. */
00089 
00090 /*  ILO     (input) INTEGER */
00091 /*  IHI     (input) INTEGER */
00092 /*          ILO and IHI must have the same values as in the previous call */
00093 /*          of SGEHRD. Q is equal to the unit matrix except in the */
00094 /*          submatrix Q(ilo+1:ihi,ilo+1:ihi). */
00095 /*          If SIDE = 'L', then 1 <= ILO <= IHI <= M, if M > 0, and */
00096 /*          ILO = 1 and IHI = 0, if M = 0; */
00097 /*          if SIDE = 'R', then 1 <= ILO <= IHI <= N, if N > 0, and */
00098 /*          ILO = 1 and IHI = 0, if N = 0. */
00099 
00100 /*  A       (input) REAL array, dimension */
00101 /*                               (LDA,M) if SIDE = 'L' */
00102 /*                               (LDA,N) if SIDE = 'R' */
00103 /*          The vectors which define the elementary reflectors, as */
00104 /*          returned by SGEHRD. */
00105 
00106 /*  LDA     (input) INTEGER */
00107 /*          The leading dimension of the array A. */
00108 /*          LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'. */
00109 
00110 /*  TAU     (input) REAL array, dimension */
00111 /*                               (M-1) if SIDE = 'L' */
00112 /*                               (N-1) if SIDE = 'R' */
00113 /*          TAU(i) must contain the scalar factor of the elementary */
00114 /*          reflector H(i), as returned by SGEHRD. */
00115 
00116 /*  C       (input/output) REAL array, dimension (LDC,N) */
00117 /*          On entry, the M-by-N matrix C. */
00118 /*          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. */
00119 
00120 /*  LDC     (input) INTEGER */
00121 /*          The leading dimension of the array C. LDC >= max(1,M). */
00122 
00123 /*  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
00124 /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
00125 
00126 /*  LWORK   (input) INTEGER */
00127 /*          The dimension of the array WORK. */
00128 /*          If SIDE = 'L', LWORK >= max(1,N); */
00129 /*          if SIDE = 'R', LWORK >= max(1,M). */
00130 /*          For optimum performance LWORK >= N*NB if SIDE = 'L', and */
00131 /*          LWORK >= M*NB if SIDE = 'R', where NB is the optimal */
00132 /*          blocksize. */
00133 
00134 /*          If LWORK = -1, then a workspace query is assumed; the routine */
00135 /*          only calculates the optimal size of the WORK array, returns */
00136 /*          this value as the first entry of the WORK array, and no error */
00137 /*          message related to LWORK is issued by XERBLA. */
00138 
00139 /*  INFO    (output) INTEGER */
00140 /*          = 0:  successful exit */
00141 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00142 
00143 /*  ===================================================================== */
00144 
00145 /*     .. Local Scalars .. */
00146 /*     .. */
00147 /*     .. External Functions .. */
00148 /*     .. */
00149 /*     .. External Subroutines .. */
00150 /*     .. */
00151 /*     .. Intrinsic Functions .. */
00152 /*     .. */
00153 /*     .. Executable Statements .. */
00154 
00155 /*     Test the input arguments */
00156 
00157     /* Parameter adjustments */
00158     a_dim1 = *lda;
00159     a_offset = 1 + a_dim1;
00160     a -= a_offset;
00161     --tau;
00162     c_dim1 = *ldc;
00163     c_offset = 1 + c_dim1;
00164     c__ -= c_offset;
00165     --work;
00166 
00167     /* Function Body */
00168     *info = 0;
00169     nh = *ihi - *ilo;
00170     left = lsame_(side, "L");
00171     lquery = *lwork == -1;
00172 
00173 /*     NQ is the order of Q and NW is the minimum dimension of WORK */
00174 
00175     if (left) {
00176         nq = *m;
00177         nw = *n;
00178     } else {
00179         nq = *n;
00180         nw = *m;
00181     }
00182     if (! left && ! lsame_(side, "R")) {
00183         *info = -1;
00184     } else if (! lsame_(trans, "N") && ! lsame_(trans, 
00185             "T")) {
00186         *info = -2;
00187     } else if (*m < 0) {
00188         *info = -3;
00189     } else if (*n < 0) {
00190         *info = -4;
00191     } else if (*ilo < 1 || *ilo > max(1,nq)) {
00192         *info = -5;
00193     } else if (*ihi < min(*ilo,nq) || *ihi > nq) {
00194         *info = -6;
00195     } else if (*lda < max(1,nq)) {
00196         *info = -8;
00197     } else if (*ldc < max(1,*m)) {
00198         *info = -11;
00199     } else if (*lwork < max(1,nw) && ! lquery) {
00200         *info = -13;
00201     }
00202 
00203     if (*info == 0) {
00204         if (left) {
00205 /* Writing concatenation */
00206             i__1[0] = 1, a__1[0] = side;
00207             i__1[1] = 1, a__1[1] = trans;
00208             s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
00209             nb = ilaenv_(&c__1, "SORMQR", ch__1, &nh, n, &nh, &c_n1);
00210         } else {
00211 /* Writing concatenation */
00212             i__1[0] = 1, a__1[0] = side;
00213             i__1[1] = 1, a__1[1] = trans;
00214             s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
00215             nb = ilaenv_(&c__1, "SORMQR", ch__1, m, &nh, &nh, &c_n1);
00216         }
00217         lwkopt = max(1,nw) * nb;
00218         work[1] = (real) lwkopt;
00219     }
00220 
00221     if (*info != 0) {
00222         i__2 = -(*info);
00223         xerbla_("SORMHR", &i__2);
00224         return 0;
00225     } else if (lquery) {
00226         return 0;
00227     }
00228 
00229 /*     Quick return if possible */
00230 
00231     if (*m == 0 || *n == 0 || nh == 0) {
00232         work[1] = 1.f;
00233         return 0;
00234     }
00235 
00236     if (left) {
00237         mi = nh;
00238         ni = *n;
00239         i1 = *ilo + 1;
00240         i2 = 1;
00241     } else {
00242         mi = *m;
00243         ni = nh;
00244         i1 = 1;
00245         i2 = *ilo + 1;
00246     }
00247 
00248     sormqr_(side, trans, &mi, &ni, &nh, &a[*ilo + 1 + *ilo * a_dim1], lda, &
00249             tau[*ilo], &c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &iinfo);
00250 
00251     work[1] = (real) lwkopt;
00252     return 0;
00253 
00254 /*     End of SORMHR */
00255 
00256 } /* sormhr_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:12