slaqp2.c
Go to the documentation of this file.
00001 /* slaqp2.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 
00020 /* Subroutine */ int slaqp2_(integer *m, integer *n, integer *offset, real *a, 
00021          integer *lda, integer *jpvt, real *tau, real *vn1, real *vn2, real *
00022         work)
00023 {
00024     /* System generated locals */
00025     integer a_dim1, a_offset, i__1, i__2, i__3;
00026     real r__1, r__2;
00027 
00028     /* Builtin functions */
00029     double sqrt(doublereal);
00030 
00031     /* Local variables */
00032     integer i__, j, mn;
00033     real aii;
00034     integer pvt;
00035     real temp, temp2;
00036     extern doublereal snrm2_(integer *, real *, integer *);
00037     real tol3z;
00038     integer offpi;
00039     extern /* Subroutine */ int slarf_(char *, integer *, integer *, real *, 
00040             integer *, real *, real *, integer *, real *);
00041     integer itemp;
00042     extern /* Subroutine */ int sswap_(integer *, real *, integer *, real *, 
00043             integer *);
00044     extern doublereal slamch_(char *);
00045     extern integer isamax_(integer *, real *, integer *);
00046     extern /* Subroutine */ int slarfp_(integer *, real *, real *, integer *, 
00047             real *);
00048 
00049 
00050 /*  -- LAPACK auxiliary routine (version 3.2) -- */
00051 /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
00052 /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
00053 /*     November 2006 */
00054 
00055 /*     .. Scalar Arguments .. */
00056 /*     .. */
00057 /*     .. Array Arguments .. */
00058 /*     .. */
00059 
00060 /*  Purpose */
00061 /*  ======= */
00062 
00063 /*  SLAQP2 computes a QR factorization with column pivoting of */
00064 /*  the block A(OFFSET+1:M,1:N). */
00065 /*  The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized. */
00066 
00067 /*  Arguments */
00068 /*  ========= */
00069 
00070 /*  M       (input) INTEGER */
00071 /*          The number of rows of the matrix A. M >= 0. */
00072 
00073 /*  N       (input) INTEGER */
00074 /*          The number of columns of the matrix A. N >= 0. */
00075 
00076 /*  OFFSET  (input) INTEGER */
00077 /*          The number of rows of the matrix A that must be pivoted */
00078 /*          but no factorized. OFFSET >= 0. */
00079 
00080 /*  A       (input/output) REAL array, dimension (LDA,N) */
00081 /*          On entry, the M-by-N matrix A. */
00082 /*          On exit, the upper triangle of block A(OFFSET+1:M,1:N) is */
00083 /*          the triangular factor obtained; the elements in block */
00084 /*          A(OFFSET+1:M,1:N) below the diagonal, together with the */
00085 /*          array TAU, represent the orthogonal matrix Q as a product of */
00086 /*          elementary reflectors. Block A(1:OFFSET,1:N) has been */
00087 /*          accordingly pivoted, but no factorized. */
00088 
00089 /*  LDA     (input) INTEGER */
00090 /*          The leading dimension of the array A. LDA >= max(1,M). */
00091 
00092 /*  JPVT    (input/output) INTEGER array, dimension (N) */
00093 /*          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted */
00094 /*          to the front of A*P (a leading column); if JPVT(i) = 0, */
00095 /*          the i-th column of A is a free column. */
00096 /*          On exit, if JPVT(i) = k, then the i-th column of A*P */
00097 /*          was the k-th column of A. */
00098 
00099 /*  TAU     (output) REAL array, dimension (min(M,N)) */
00100 /*          The scalar factors of the elementary reflectors. */
00101 
00102 /*  VN1     (input/output) REAL array, dimension (N) */
00103 /*          The vector with the partial column norms. */
00104 
00105 /*  VN2     (input/output) REAL array, dimension (N) */
00106 /*          The vector with the exact column norms. */
00107 
00108 /*  WORK    (workspace) REAL array, dimension (N) */
00109 
00110 /*  Further Details */
00111 /*  =============== */
00112 
00113 /*  Based on contributions by */
00114 /*    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain */
00115 /*    X. Sun, Computer Science Dept., Duke University, USA */
00116 
00117 /*  Partial column norm updating strategy modified by */
00118 /*    Z. Drmac and Z. Bujanovic, Dept. of Mathematics, */
00119 /*    University of Zagreb, Croatia. */
00120 /*    June 2006. */
00121 /*  For more details see LAPACK Working Note 176. */
00122 /*  ===================================================================== */
00123 
00124 /*     .. Parameters .. */
00125 /*     .. */
00126 /*     .. Local Scalars .. */
00127 /*     .. */
00128 /*     .. External Subroutines .. */
00129 /*     .. */
00130 /*     .. Intrinsic Functions .. */
00131 /*     .. */
00132 /*     .. External Functions .. */
00133 /*     .. */
00134 /*     .. Executable Statements .. */
00135 
00136     /* Parameter adjustments */
00137     a_dim1 = *lda;
00138     a_offset = 1 + a_dim1;
00139     a -= a_offset;
00140     --jpvt;
00141     --tau;
00142     --vn1;
00143     --vn2;
00144     --work;
00145 
00146     /* Function Body */
00147 /* Computing MIN */
00148     i__1 = *m - *offset;
00149     mn = min(i__1,*n);
00150     tol3z = sqrt(slamch_("Epsilon"));
00151 
00152 /*     Compute factorization. */
00153 
00154     i__1 = mn;
00155     for (i__ = 1; i__ <= i__1; ++i__) {
00156 
00157         offpi = *offset + i__;
00158 
00159 /*        Determine ith pivot column and swap if necessary. */
00160 
00161         i__2 = *n - i__ + 1;
00162         pvt = i__ - 1 + isamax_(&i__2, &vn1[i__], &c__1);
00163 
00164         if (pvt != i__) {
00165             sswap_(m, &a[pvt * a_dim1 + 1], &c__1, &a[i__ * a_dim1 + 1], &
00166                     c__1);
00167             itemp = jpvt[pvt];
00168             jpvt[pvt] = jpvt[i__];
00169             jpvt[i__] = itemp;
00170             vn1[pvt] = vn1[i__];
00171             vn2[pvt] = vn2[i__];
00172         }
00173 
00174 /*        Generate elementary reflector H(i). */
00175 
00176         if (offpi < *m) {
00177             i__2 = *m - offpi + 1;
00178             slarfp_(&i__2, &a[offpi + i__ * a_dim1], &a[offpi + 1 + i__ * 
00179                     a_dim1], &c__1, &tau[i__]);
00180         } else {
00181             slarfp_(&c__1, &a[*m + i__ * a_dim1], &a[*m + i__ * a_dim1], &
00182                     c__1, &tau[i__]);
00183         }
00184 
00185         if (i__ < *n) {
00186 
00187 /*           Apply H(i)' to A(offset+i:m,i+1:n) from the left. */
00188 
00189             aii = a[offpi + i__ * a_dim1];
00190             a[offpi + i__ * a_dim1] = 1.f;
00191             i__2 = *m - offpi + 1;
00192             i__3 = *n - i__;
00193             slarf_("Left", &i__2, &i__3, &a[offpi + i__ * a_dim1], &c__1, &
00194                     tau[i__], &a[offpi + (i__ + 1) * a_dim1], lda, &work[1]);
00195             a[offpi + i__ * a_dim1] = aii;
00196         }
00197 
00198 /*        Update partial column norms. */
00199 
00200         i__2 = *n;
00201         for (j = i__ + 1; j <= i__2; ++j) {
00202             if (vn1[j] != 0.f) {
00203 
00204 /*              NOTE: The following 4 lines follow from the analysis in */
00205 /*              Lapack Working Note 176. */
00206 
00207 /* Computing 2nd power */
00208                 r__2 = (r__1 = a[offpi + j * a_dim1], dabs(r__1)) / vn1[j];
00209                 temp = 1.f - r__2 * r__2;
00210                 temp = dmax(temp,0.f);
00211 /* Computing 2nd power */
00212                 r__1 = vn1[j] / vn2[j];
00213                 temp2 = temp * (r__1 * r__1);
00214                 if (temp2 <= tol3z) {
00215                     if (offpi < *m) {
00216                         i__3 = *m - offpi;
00217                         vn1[j] = snrm2_(&i__3, &a[offpi + 1 + j * a_dim1], &
00218                                 c__1);
00219                         vn2[j] = vn1[j];
00220                     } else {
00221                         vn1[j] = 0.f;
00222                         vn2[j] = 0.f;
00223                     }
00224                 } else {
00225                     vn1[j] *= sqrt(temp);
00226                 }
00227             }
00228 /* L10: */
00229         }
00230 
00231 /* L20: */
00232     }
00233 
00234     return 0;
00235 
00236 /*     End of SLAQP2 */
00237 
00238 } /* slaqp2_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:11