00001 /* slaed7.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__2 = 2; 00019 static integer c__1 = 1; 00020 static real c_b10 = 1.f; 00021 static real c_b11 = 0.f; 00022 static integer c_n1 = -1; 00023 00024 /* Subroutine */ int slaed7_(integer *icompq, integer *n, integer *qsiz, 00025 integer *tlvls, integer *curlvl, integer *curpbm, real *d__, real *q, 00026 integer *ldq, integer *indxq, real *rho, integer *cutpnt, real * 00027 qstore, integer *qptr, integer *prmptr, integer *perm, integer * 00028 givptr, integer *givcol, real *givnum, real *work, integer *iwork, 00029 integer *info) 00030 { 00031 /* System generated locals */ 00032 integer q_dim1, q_offset, i__1, i__2; 00033 00034 /* Builtin functions */ 00035 integer pow_ii(integer *, integer *); 00036 00037 /* Local variables */ 00038 integer i__, k, n1, n2, is, iw, iz, iq2, ptr, ldq2, indx, curr, indxc; 00039 extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, 00040 integer *, real *, real *, integer *, real *, integer *, real *, 00041 real *, integer *); 00042 integer indxp; 00043 extern /* Subroutine */ int slaed8_(integer *, integer *, integer *, 00044 integer *, real *, real *, integer *, integer *, real *, integer * 00045 , real *, real *, real *, integer *, real *, integer *, integer *, 00046 integer *, real *, integer *, integer *, integer *), slaed9_( 00047 integer *, integer *, integer *, integer *, real *, real *, 00048 integer *, real *, real *, real *, real *, integer *, integer *), 00049 slaeda_(integer *, integer *, integer *, integer *, integer *, 00050 integer *, integer *, integer *, real *, real *, integer *, real * 00051 , real *, integer *); 00052 integer idlmda; 00053 extern /* Subroutine */ int xerbla_(char *, integer *), slamrg_( 00054 integer *, integer *, real *, integer *, integer *, integer *); 00055 integer coltyp; 00056 00057 00058 /* -- LAPACK routine (version 3.2) -- */ 00059 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00060 /* November 2006 */ 00061 00062 /* .. Scalar Arguments .. */ 00063 /* .. */ 00064 /* .. Array Arguments .. */ 00065 /* .. */ 00066 00067 /* Purpose */ 00068 /* ======= */ 00069 00070 /* SLAED7 computes the updated eigensystem of a diagonal */ 00071 /* matrix after modification by a rank-one symmetric matrix. This */ 00072 /* routine is used only for the eigenproblem which requires all */ 00073 /* eigenvalues and optionally eigenvectors of a dense symmetric matrix */ 00074 /* that has been reduced to tridiagonal form. SLAED1 handles */ 00075 /* the case in which all eigenvalues and eigenvectors of a symmetric */ 00076 /* tridiagonal matrix are desired. */ 00077 00078 /* T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out) */ 00079 00080 /* where Z = Q'u, u is a vector of length N with ones in the */ 00081 /* CUTPNT and CUTPNT + 1 th elements and zeros elsewhere. */ 00082 00083 /* The eigenvectors of the original matrix are stored in Q, and the */ 00084 /* eigenvalues are in D. The algorithm consists of three stages: */ 00085 00086 /* The first stage consists of deflating the size of the problem */ 00087 /* when there are multiple eigenvalues or if there is a zero in */ 00088 /* the Z vector. For each such occurence the dimension of the */ 00089 /* secular equation problem is reduced by one. This stage is */ 00090 /* performed by the routine SLAED8. */ 00091 00092 /* The second stage consists of calculating the updated */ 00093 /* eigenvalues. This is done by finding the roots of the secular */ 00094 /* equation via the routine SLAED4 (as called by SLAED9). */ 00095 /* This routine also calculates the eigenvectors of the current */ 00096 /* problem. */ 00097 00098 /* The final stage consists of computing the updated eigenvectors */ 00099 /* directly using the updated eigenvalues. The eigenvectors for */ 00100 /* the current problem are multiplied with the eigenvectors from */ 00101 /* the overall problem. */ 00102 00103 /* Arguments */ 00104 /* ========= */ 00105 00106 /* ICOMPQ (input) INTEGER */ 00107 /* = 0: Compute eigenvalues only. */ 00108 /* = 1: Compute eigenvectors of original dense symmetric matrix */ 00109 /* also. On entry, Q contains the orthogonal matrix used */ 00110 /* to reduce the original matrix to tridiagonal form. */ 00111 00112 /* N (input) INTEGER */ 00113 /* The dimension of the symmetric tridiagonal matrix. N >= 0. */ 00114 00115 /* QSIZ (input) INTEGER */ 00116 /* The dimension of the orthogonal matrix used to reduce */ 00117 /* the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. */ 00118 00119 /* TLVLS (input) INTEGER */ 00120 /* The total number of merging levels in the overall divide and */ 00121 /* conquer tree. */ 00122 00123 /* CURLVL (input) INTEGER */ 00124 /* The current level in the overall merge routine, */ 00125 /* 0 <= CURLVL <= TLVLS. */ 00126 00127 /* CURPBM (input) INTEGER */ 00128 /* The current problem in the current level in the overall */ 00129 /* merge routine (counting from upper left to lower right). */ 00130 00131 /* D (input/output) REAL array, dimension (N) */ 00132 /* On entry, the eigenvalues of the rank-1-perturbed matrix. */ 00133 /* On exit, the eigenvalues of the repaired matrix. */ 00134 00135 /* Q (input/output) REAL array, dimension (LDQ, N) */ 00136 /* On entry, the eigenvectors of the rank-1-perturbed matrix. */ 00137 /* On exit, the eigenvectors of the repaired tridiagonal matrix. */ 00138 00139 /* LDQ (input) INTEGER */ 00140 /* The leading dimension of the array Q. LDQ >= max(1,N). */ 00141 00142 /* INDXQ (output) INTEGER array, dimension (N) */ 00143 /* The permutation which will reintegrate the subproblem just */ 00144 /* solved back into sorted order, i.e., D( INDXQ( I = 1, N ) ) */ 00145 /* will be in ascending order. */ 00146 00147 /* RHO (input) REAL */ 00148 /* The subdiagonal element used to create the rank-1 */ 00149 /* modification. */ 00150 00151 /* CUTPNT (input) INTEGER */ 00152 /* Contains the location of the last eigenvalue in the leading */ 00153 /* sub-matrix. min(1,N) <= CUTPNT <= N. */ 00154 00155 /* QSTORE (input/output) REAL array, dimension (N**2+1) */ 00156 /* Stores eigenvectors of submatrices encountered during */ 00157 /* divide and conquer, packed together. QPTR points to */ 00158 /* beginning of the submatrices. */ 00159 00160 /* QPTR (input/output) INTEGER array, dimension (N+2) */ 00161 /* List of indices pointing to beginning of submatrices stored */ 00162 /* in QSTORE. The submatrices are numbered starting at the */ 00163 /* bottom left of the divide and conquer tree, from left to */ 00164 /* right and bottom to top. */ 00165 00166 /* PRMPTR (input) INTEGER array, dimension (N lg N) */ 00167 /* Contains a list of pointers which indicate where in PERM a */ 00168 /* level's permutation is stored. PRMPTR(i+1) - PRMPTR(i) */ 00169 /* indicates the size of the permutation and also the size of */ 00170 /* the full, non-deflated problem. */ 00171 00172 /* PERM (input) INTEGER array, dimension (N lg N) */ 00173 /* Contains the permutations (from deflation and sorting) to be */ 00174 /* applied to each eigenblock. */ 00175 00176 /* GIVPTR (input) INTEGER array, dimension (N lg N) */ 00177 /* Contains a list of pointers which indicate where in GIVCOL a */ 00178 /* level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i) */ 00179 /* indicates the number of Givens rotations. */ 00180 00181 /* GIVCOL (input) INTEGER array, dimension (2, N lg N) */ 00182 /* Each pair of numbers indicates a pair of columns to take place */ 00183 /* in a Givens rotation. */ 00184 00185 /* GIVNUM (input) REAL array, dimension (2, N lg N) */ 00186 /* Each number indicates the S value to be used in the */ 00187 /* corresponding Givens rotation. */ 00188 00189 /* WORK (workspace) REAL array, dimension (3*N+QSIZ*N) */ 00190 00191 /* IWORK (workspace) INTEGER array, dimension (4*N) */ 00192 00193 /* INFO (output) INTEGER */ 00194 /* = 0: successful exit. */ 00195 /* < 0: if INFO = -i, the i-th argument had an illegal value. */ 00196 /* > 0: if INFO = 1, an eigenvalue did not converge */ 00197 00198 /* Further Details */ 00199 /* =============== */ 00200 00201 /* Based on contributions by */ 00202 /* Jeff Rutter, Computer Science Division, University of California */ 00203 /* at Berkeley, USA */ 00204 00205 /* ===================================================================== */ 00206 00207 /* .. Parameters .. */ 00208 /* .. */ 00209 /* .. Local Scalars .. */ 00210 /* .. */ 00211 /* .. External Subroutines .. */ 00212 /* .. */ 00213 /* .. Intrinsic Functions .. */ 00214 /* .. */ 00215 /* .. Executable Statements .. */ 00216 00217 /* Test the input parameters. */ 00218 00219 /* Parameter adjustments */ 00220 --d__; 00221 q_dim1 = *ldq; 00222 q_offset = 1 + q_dim1; 00223 q -= q_offset; 00224 --indxq; 00225 --qstore; 00226 --qptr; 00227 --prmptr; 00228 --perm; 00229 --givptr; 00230 givcol -= 3; 00231 givnum -= 3; 00232 --work; 00233 --iwork; 00234 00235 /* Function Body */ 00236 *info = 0; 00237 00238 if (*icompq < 0 || *icompq > 1) { 00239 *info = -1; 00240 } else if (*n < 0) { 00241 *info = -2; 00242 } else if (*icompq == 1 && *qsiz < *n) { 00243 *info = -4; 00244 } else if (*ldq < max(1,*n)) { 00245 *info = -9; 00246 } else if (min(1,*n) > *cutpnt || *n < *cutpnt) { 00247 *info = -12; 00248 } 00249 if (*info != 0) { 00250 i__1 = -(*info); 00251 xerbla_("SLAED7", &i__1); 00252 return 0; 00253 } 00254 00255 /* Quick return if possible */ 00256 00257 if (*n == 0) { 00258 return 0; 00259 } 00260 00261 /* The following values are for bookkeeping purposes only. They are */ 00262 /* integer pointers which indicate the portion of the workspace */ 00263 /* used by a particular array in SLAED8 and SLAED9. */ 00264 00265 if (*icompq == 1) { 00266 ldq2 = *qsiz; 00267 } else { 00268 ldq2 = *n; 00269 } 00270 00271 iz = 1; 00272 idlmda = iz + *n; 00273 iw = idlmda + *n; 00274 iq2 = iw + *n; 00275 is = iq2 + *n * ldq2; 00276 00277 indx = 1; 00278 indxc = indx + *n; 00279 coltyp = indxc + *n; 00280 indxp = coltyp + *n; 00281 00282 /* Form the z-vector which consists of the last row of Q_1 and the */ 00283 /* first row of Q_2. */ 00284 00285 ptr = pow_ii(&c__2, tlvls) + 1; 00286 i__1 = *curlvl - 1; 00287 for (i__ = 1; i__ <= i__1; ++i__) { 00288 i__2 = *tlvls - i__; 00289 ptr += pow_ii(&c__2, &i__2); 00290 /* L10: */ 00291 } 00292 curr = ptr + *curpbm; 00293 slaeda_(n, tlvls, curlvl, curpbm, &prmptr[1], &perm[1], &givptr[1], & 00294 givcol[3], &givnum[3], &qstore[1], &qptr[1], &work[iz], &work[iz 00295 + *n], info); 00296 00297 /* When solving the final problem, we no longer need the stored data, */ 00298 /* so we will overwrite the data from this level onto the previously */ 00299 /* used storage space. */ 00300 00301 if (*curlvl == *tlvls) { 00302 qptr[curr] = 1; 00303 prmptr[curr] = 1; 00304 givptr[curr] = 1; 00305 } 00306 00307 /* Sort and Deflate eigenvalues. */ 00308 00309 slaed8_(icompq, &k, n, qsiz, &d__[1], &q[q_offset], ldq, &indxq[1], rho, 00310 cutpnt, &work[iz], &work[idlmda], &work[iq2], &ldq2, &work[iw], & 00311 perm[prmptr[curr]], &givptr[curr + 1], &givcol[(givptr[curr] << 1) 00312 + 1], &givnum[(givptr[curr] << 1) + 1], &iwork[indxp], &iwork[ 00313 indx], info); 00314 prmptr[curr + 1] = prmptr[curr] + *n; 00315 givptr[curr + 1] += givptr[curr]; 00316 00317 /* Solve Secular Equation. */ 00318 00319 if (k != 0) { 00320 slaed9_(&k, &c__1, &k, n, &d__[1], &work[is], &k, rho, &work[idlmda], 00321 &work[iw], &qstore[qptr[curr]], &k, info); 00322 if (*info != 0) { 00323 goto L30; 00324 } 00325 if (*icompq == 1) { 00326 sgemm_("N", "N", qsiz, &k, &k, &c_b10, &work[iq2], &ldq2, &qstore[ 00327 qptr[curr]], &k, &c_b11, &q[q_offset], ldq); 00328 } 00329 /* Computing 2nd power */ 00330 i__1 = k; 00331 qptr[curr + 1] = qptr[curr] + i__1 * i__1; 00332 00333 /* Prepare the INDXQ sorting permutation. */ 00334 00335 n1 = k; 00336 n2 = *n - k; 00337 slamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &indxq[1]); 00338 } else { 00339 qptr[curr + 1] = qptr[curr]; 00340 i__1 = *n; 00341 for (i__ = 1; i__ <= i__1; ++i__) { 00342 indxq[i__] = i__; 00343 /* L20: */ 00344 } 00345 } 00346 00347 L30: 00348 return 0; 00349 00350 /* End of SLAED7 */ 00351 00352 } /* slaed7_ */