00001 /* slaed3.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 static real c_b22 = 1.f; 00020 static real c_b23 = 0.f; 00021 00022 /* Subroutine */ int slaed3_(integer *k, integer *n, integer *n1, real *d__, 00023 real *q, integer *ldq, real *rho, real *dlamda, real *q2, integer * 00024 indx, integer *ctot, real *w, real *s, integer *info) 00025 { 00026 /* System generated locals */ 00027 integer q_dim1, q_offset, i__1, i__2; 00028 real r__1; 00029 00030 /* Builtin functions */ 00031 double sqrt(doublereal), r_sign(real *, real *); 00032 00033 /* Local variables */ 00034 integer i__, j, n2, n12, ii, n23, iq2; 00035 real temp; 00036 extern doublereal snrm2_(integer *, real *, integer *); 00037 extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, 00038 integer *, real *, real *, integer *, real *, integer *, real *, 00039 real *, integer *), scopy_(integer *, real *, 00040 integer *, real *, integer *), slaed4_(integer *, integer *, real 00041 *, real *, real *, real *, real *, integer *); 00042 extern doublereal slamc3_(real *, real *); 00043 extern /* Subroutine */ int xerbla_(char *, integer *), slacpy_( 00044 char *, integer *, integer *, real *, integer *, real *, integer * 00045 ), slaset_(char *, integer *, integer *, real *, real *, 00046 real *, integer *); 00047 00048 00049 /* -- LAPACK routine (version 3.2) -- */ 00050 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00051 /* November 2006 */ 00052 00053 /* .. Scalar Arguments .. */ 00054 /* .. */ 00055 /* .. Array Arguments .. */ 00056 /* .. */ 00057 00058 /* Purpose */ 00059 /* ======= */ 00060 00061 /* SLAED3 finds the roots of the secular equation, as defined by the */ 00062 /* values in D, W, and RHO, between 1 and K. It makes the */ 00063 /* appropriate calls to SLAED4 and then updates the eigenvectors by */ 00064 /* multiplying the matrix of eigenvectors of the pair of eigensystems */ 00065 /* being combined by the matrix of eigenvectors of the K-by-K system */ 00066 /* which is solved here. */ 00067 00068 /* This code makes very mild assumptions about floating point */ 00069 /* arithmetic. It will work on machines with a guard digit in */ 00070 /* add/subtract, or on those binary machines without guard digits */ 00071 /* which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. */ 00072 /* It could conceivably fail on hexadecimal or decimal machines */ 00073 /* without guard digits, but we know of none. */ 00074 00075 /* Arguments */ 00076 /* ========= */ 00077 00078 /* K (input) INTEGER */ 00079 /* The number of terms in the rational function to be solved by */ 00080 /* SLAED4. K >= 0. */ 00081 00082 /* N (input) INTEGER */ 00083 /* The number of rows and columns in the Q matrix. */ 00084 /* N >= K (deflation may result in N>K). */ 00085 00086 /* N1 (input) INTEGER */ 00087 /* The location of the last eigenvalue in the leading submatrix. */ 00088 /* min(1,N) <= N1 <= N/2. */ 00089 00090 /* D (output) REAL array, dimension (N) */ 00091 /* D(I) contains the updated eigenvalues for */ 00092 /* 1 <= I <= K. */ 00093 00094 /* Q (output) REAL array, dimension (LDQ,N) */ 00095 /* Initially the first K columns are used as workspace. */ 00096 /* On output the columns 1 to K contain */ 00097 /* the updated eigenvectors. */ 00098 00099 /* LDQ (input) INTEGER */ 00100 /* The leading dimension of the array Q. LDQ >= max(1,N). */ 00101 00102 /* RHO (input) REAL */ 00103 /* The value of the parameter in the rank one update equation. */ 00104 /* RHO >= 0 required. */ 00105 00106 /* DLAMDA (input/output) REAL array, dimension (K) */ 00107 /* The first K elements of this array contain the old roots */ 00108 /* of the deflated updating problem. These are the poles */ 00109 /* of the secular equation. May be changed on output by */ 00110 /* having lowest order bit set to zero on Cray X-MP, Cray Y-MP, */ 00111 /* Cray-2, or Cray C-90, as described above. */ 00112 00113 /* Q2 (input) REAL array, dimension (LDQ2, N) */ 00114 /* The first K columns of this matrix contain the non-deflated */ 00115 /* eigenvectors for the split problem. */ 00116 00117 /* INDX (input) INTEGER array, dimension (N) */ 00118 /* The permutation used to arrange the columns of the deflated */ 00119 /* Q matrix into three groups (see SLAED2). */ 00120 /* The rows of the eigenvectors found by SLAED4 must be likewise */ 00121 /* permuted before the matrix multiply can take place. */ 00122 00123 /* CTOT (input) INTEGER array, dimension (4) */ 00124 /* A count of the total number of the various types of columns */ 00125 /* in Q, as described in INDX. The fourth column type is any */ 00126 /* column which has been deflated. */ 00127 00128 /* W (input/output) REAL array, dimension (K) */ 00129 /* The first K elements of this array contain the components */ 00130 /* of the deflation-adjusted updating vector. Destroyed on */ 00131 /* output. */ 00132 00133 /* S (workspace) REAL array, dimension (N1 + 1)*K */ 00134 /* Will contain the eigenvectors of the repaired matrix which */ 00135 /* will be multiplied by the previously accumulated eigenvectors */ 00136 /* to update the system. */ 00137 00138 /* LDS (input) INTEGER */ 00139 /* The leading dimension of S. LDS >= max(1,K). */ 00140 00141 /* INFO (output) INTEGER */ 00142 /* = 0: successful exit. */ 00143 /* < 0: if INFO = -i, the i-th argument had an illegal value. */ 00144 /* > 0: if INFO = 1, an eigenvalue did not converge */ 00145 00146 /* Further Details */ 00147 /* =============== */ 00148 00149 /* Based on contributions by */ 00150 /* Jeff Rutter, Computer Science Division, University of California */ 00151 /* at Berkeley, USA */ 00152 /* Modified by Francoise Tisseur, University of Tennessee. */ 00153 00154 /* ===================================================================== */ 00155 00156 /* .. Parameters .. */ 00157 /* .. */ 00158 /* .. Local Scalars .. */ 00159 /* .. */ 00160 /* .. External Functions .. */ 00161 /* .. */ 00162 /* .. External Subroutines .. */ 00163 /* .. */ 00164 /* .. Intrinsic Functions .. */ 00165 /* .. */ 00166 /* .. Executable Statements .. */ 00167 00168 /* Test the input parameters. */ 00169 00170 /* Parameter adjustments */ 00171 --d__; 00172 q_dim1 = *ldq; 00173 q_offset = 1 + q_dim1; 00174 q -= q_offset; 00175 --dlamda; 00176 --q2; 00177 --indx; 00178 --ctot; 00179 --w; 00180 --s; 00181 00182 /* Function Body */ 00183 *info = 0; 00184 00185 if (*k < 0) { 00186 *info = -1; 00187 } else if (*n < *k) { 00188 *info = -2; 00189 } else if (*ldq < max(1,*n)) { 00190 *info = -6; 00191 } 00192 if (*info != 0) { 00193 i__1 = -(*info); 00194 xerbla_("SLAED3", &i__1); 00195 return 0; 00196 } 00197 00198 /* Quick return if possible */ 00199 00200 if (*k == 0) { 00201 return 0; 00202 } 00203 00204 /* Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can */ 00205 /* be computed with high relative accuracy (barring over/underflow). */ 00206 /* This is a problem on machines without a guard digit in */ 00207 /* add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). */ 00208 /* The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I), */ 00209 /* which on any of these machines zeros out the bottommost */ 00210 /* bit of DLAMDA(I) if it is 1; this makes the subsequent */ 00211 /* subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation */ 00212 /* occurs. On binary machines with a guard digit (almost all */ 00213 /* machines) it does not change DLAMDA(I) at all. On hexadecimal */ 00214 /* and decimal machines with a guard digit, it slightly */ 00215 /* changes the bottommost bits of DLAMDA(I). It does not account */ 00216 /* for hexadecimal or decimal machines without guard digits */ 00217 /* (we know of none). We use a subroutine call to compute */ 00218 /* 2*DLAMBDA(I) to prevent optimizing compilers from eliminating */ 00219 /* this code. */ 00220 00221 i__1 = *k; 00222 for (i__ = 1; i__ <= i__1; ++i__) { 00223 dlamda[i__] = slamc3_(&dlamda[i__], &dlamda[i__]) - dlamda[i__]; 00224 /* L10: */ 00225 } 00226 00227 i__1 = *k; 00228 for (j = 1; j <= i__1; ++j) { 00229 slaed4_(k, &j, &dlamda[1], &w[1], &q[j * q_dim1 + 1], rho, &d__[j], 00230 info); 00231 00232 /* If the zero finder fails, the computation is terminated. */ 00233 00234 if (*info != 0) { 00235 goto L120; 00236 } 00237 /* L20: */ 00238 } 00239 00240 if (*k == 1) { 00241 goto L110; 00242 } 00243 if (*k == 2) { 00244 i__1 = *k; 00245 for (j = 1; j <= i__1; ++j) { 00246 w[1] = q[j * q_dim1 + 1]; 00247 w[2] = q[j * q_dim1 + 2]; 00248 ii = indx[1]; 00249 q[j * q_dim1 + 1] = w[ii]; 00250 ii = indx[2]; 00251 q[j * q_dim1 + 2] = w[ii]; 00252 /* L30: */ 00253 } 00254 goto L110; 00255 } 00256 00257 /* Compute updated W. */ 00258 00259 scopy_(k, &w[1], &c__1, &s[1], &c__1); 00260 00261 /* Initialize W(I) = Q(I,I) */ 00262 00263 i__1 = *ldq + 1; 00264 scopy_(k, &q[q_offset], &i__1, &w[1], &c__1); 00265 i__1 = *k; 00266 for (j = 1; j <= i__1; ++j) { 00267 i__2 = j - 1; 00268 for (i__ = 1; i__ <= i__2; ++i__) { 00269 w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]); 00270 /* L40: */ 00271 } 00272 i__2 = *k; 00273 for (i__ = j + 1; i__ <= i__2; ++i__) { 00274 w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]); 00275 /* L50: */ 00276 } 00277 /* L60: */ 00278 } 00279 i__1 = *k; 00280 for (i__ = 1; i__ <= i__1; ++i__) { 00281 r__1 = sqrt(-w[i__]); 00282 w[i__] = r_sign(&r__1, &s[i__]); 00283 /* L70: */ 00284 } 00285 00286 /* Compute eigenvectors of the modified rank-1 modification. */ 00287 00288 i__1 = *k; 00289 for (j = 1; j <= i__1; ++j) { 00290 i__2 = *k; 00291 for (i__ = 1; i__ <= i__2; ++i__) { 00292 s[i__] = w[i__] / q[i__ + j * q_dim1]; 00293 /* L80: */ 00294 } 00295 temp = snrm2_(k, &s[1], &c__1); 00296 i__2 = *k; 00297 for (i__ = 1; i__ <= i__2; ++i__) { 00298 ii = indx[i__]; 00299 q[i__ + j * q_dim1] = s[ii] / temp; 00300 /* L90: */ 00301 } 00302 /* L100: */ 00303 } 00304 00305 /* Compute the updated eigenvectors. */ 00306 00307 L110: 00308 00309 n2 = *n - *n1; 00310 n12 = ctot[1] + ctot[2]; 00311 n23 = ctot[2] + ctot[3]; 00312 00313 slacpy_("A", &n23, k, &q[ctot[1] + 1 + q_dim1], ldq, &s[1], &n23); 00314 iq2 = *n1 * n12 + 1; 00315 if (n23 != 0) { 00316 sgemm_("N", "N", &n2, k, &n23, &c_b22, &q2[iq2], &n2, &s[1], &n23, & 00317 c_b23, &q[*n1 + 1 + q_dim1], ldq); 00318 } else { 00319 slaset_("A", &n2, k, &c_b23, &c_b23, &q[*n1 + 1 + q_dim1], ldq); 00320 } 00321 00322 slacpy_("A", &n12, k, &q[q_offset], ldq, &s[1], &n12); 00323 if (n12 != 0) { 00324 sgemm_("N", "N", n1, k, &n12, &c_b22, &q2[1], n1, &s[1], &n12, &c_b23, 00325 &q[q_offset], ldq); 00326 } else { 00327 slaset_("A", n1, k, &c_b23, &c_b23, &q[q_dim1 + 1], ldq); 00328 } 00329 00330 00331 L120: 00332 return 0; 00333 00334 /* End of SLAED3 */ 00335 00336 } /* slaed3_ */