sla_gbamv.c
Go to the documentation of this file.
00001 /* sla_gbamv.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Subroutine */ int sla_gbamv__(integer *trans, integer *m, integer *n, 
00017         integer *kl, integer *ku, real *alpha, real *ab, integer *ldab, real *
00018         x, integer *incx, real *beta, real *y, integer *incy)
00019 {
00020     /* System generated locals */
00021     integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4;
00022     real r__1;
00023 
00024     /* Builtin functions */
00025     double r_sign(real *, real *);
00026 
00027     /* Local variables */
00028     extern integer ilatrans_(char *);
00029     integer i__, j;
00030     logical symb_zero__;
00031     integer kd, iy, jx, kx, ky, info;
00032     real temp;
00033     integer lenx, leny;
00034     real safe1;
00035     extern doublereal slamch_(char *);
00036     extern /* Subroutine */ int xerbla_(char *, integer *);
00037 
00038 
00039 /*     -- LAPACK routine (version 3.2)                                 -- */
00040 /*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
00041 /*     -- Jason Riedy of Univ. of California Berkeley.                 -- */
00042 /*     -- November 2008                                                -- */
00043 
00044 /*     -- LAPACK is a software package provided by Univ. of Tennessee, -- */
00045 /*     -- Univ. of California Berkeley and NAG Ltd.                    -- */
00046 
00047 /*     .. */
00048 /*     .. Scalar Arguments .. */
00049 /*     .. */
00050 /*     .. Array Arguments .. */
00051 /*     .. */
00052 
00053 /*  Purpose */
00054 /*  ======= */
00055 
00056 /*  SLA_GEAMV  performs one of the matrix-vector operations */
00057 
00058 /*          y := alpha*abs(A)*abs(x) + beta*abs(y), */
00059 /*     or   y := alpha*abs(A)'*abs(x) + beta*abs(y), */
00060 
00061 /*  where alpha and beta are scalars, x and y are vectors and A is an */
00062 /*  m by n matrix. */
00063 
00064 /*  This function is primarily used in calculating error bounds. */
00065 /*  To protect against underflow during evaluation, components in */
00066 /*  the resulting vector are perturbed away from zero by (N+1) */
00067 /*  times the underflow threshold.  To prevent unnecessarily large */
00068 /*  errors for block-structure embedded in general matrices, */
00069 /*  "symbolically" zero components are not perturbed.  A zero */
00070 /*  entry is considered "symbolic" if all multiplications involved */
00071 /*  in computing that entry have at least one zero multiplicand. */
00072 
00073 /*  Parameters */
00074 /*  ========== */
00075 
00076 /*  TRANS  - INTEGER */
00077 /*           On entry, TRANS specifies the operation to be performed as */
00078 /*           follows: */
00079 
00080 /*             BLAS_NO_TRANS      y := alpha*abs(A)*abs(x) + beta*abs(y) */
00081 /*             BLAS_TRANS         y := alpha*abs(A')*abs(x) + beta*abs(y) */
00082 /*             BLAS_CONJ_TRANS    y := alpha*abs(A')*abs(x) + beta*abs(y) */
00083 
00084 /*           Unchanged on exit. */
00085 
00086 /*  M      - INTEGER */
00087 /*           On entry, M specifies the number of rows of the matrix A. */
00088 /*           M must be at least zero. */
00089 /*           Unchanged on exit. */
00090 
00091 /*  N      - INTEGER */
00092 /*           On entry, N specifies the number of columns of the matrix A. */
00093 /*           N must be at least zero. */
00094 /*           Unchanged on exit. */
00095 
00096 /*  KL     - INTEGER */
00097 /*           The number of subdiagonals within the band of A.  KL >= 0. */
00098 
00099 /*  KU     - INTEGER */
00100 /*           The number of superdiagonals within the band of A.  KU >= 0. */
00101 
00102 /*  ALPHA  - REAL */
00103 /*           On entry, ALPHA specifies the scalar alpha. */
00104 /*           Unchanged on exit. */
00105 
00106 /*  A      - REAL             array of DIMENSION ( LDA, n ) */
00107 /*           Before entry, the leading m by n part of the array A must */
00108 /*           contain the matrix of coefficients. */
00109 /*           Unchanged on exit. */
00110 
00111 /*  LDA    - INTEGER */
00112 /*           On entry, LDA specifies the first dimension of A as declared */
00113 /*           in the calling (sub) program. LDA must be at least */
00114 /*           max( 1, m ). */
00115 /*           Unchanged on exit. */
00116 
00117 /*  X      - REAL             array of DIMENSION at least */
00118 /*           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' */
00119 /*           and at least */
00120 /*           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. */
00121 /*           Before entry, the incremented array X must contain the */
00122 /*           vector x. */
00123 /*           Unchanged on exit. */
00124 
00125 /*  INCX   - INTEGER */
00126 /*           On entry, INCX specifies the increment for the elements of */
00127 /*           X. INCX must not be zero. */
00128 /*           Unchanged on exit. */
00129 
00130 /*  BETA   - REAL */
00131 /*           On entry, BETA specifies the scalar beta. When BETA is */
00132 /*           supplied as zero then Y need not be set on input. */
00133 /*           Unchanged on exit. */
00134 
00135 /*  Y      - REAL             array of DIMENSION at least */
00136 /*           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' */
00137 /*           and at least */
00138 /*           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. */
00139 /*           Before entry with BETA non-zero, the incremented array Y */
00140 /*           must contain the vector y. On exit, Y is overwritten by the */
00141 /*           updated vector y. */
00142 
00143 /*  INCY   - INTEGER */
00144 /*           On entry, INCY specifies the increment for the elements of */
00145 /*           Y. INCY must not be zero. */
00146 /*           Unchanged on exit. */
00147 
00148 
00149 /*  Level 2 Blas routine. */
00150 /*     .. */
00151 /*     .. Parameters .. */
00152 /*     .. */
00153 /*     .. Local Scalars .. */
00154 /*     .. */
00155 /*     .. External Subroutines .. */
00156 /*     .. */
00157 /*     .. External Functions .. */
00158 /*     .. */
00159 /*     .. Intrinsic Functions .. */
00160 /*     .. */
00161 /*     .. Executable Statements .. */
00162 
00163 /*     Test the input parameters. */
00164 
00165     /* Parameter adjustments */
00166     ab_dim1 = *ldab;
00167     ab_offset = 1 + ab_dim1;
00168     ab -= ab_offset;
00169     --x;
00170     --y;
00171 
00172     /* Function Body */
00173     info = 0;
00174     if (! (*trans == ilatrans_("N") || *trans == ilatrans_("T") || *trans == ilatrans_("C"))) {
00175         info = 1;
00176     } else if (*m < 0) {
00177         info = 2;
00178     } else if (*n < 0) {
00179         info = 3;
00180     } else if (*kl < 0) {
00181         info = 4;
00182     } else if (*ku < 0) {
00183         info = 5;
00184     } else if (*ldab < *kl + *ku + 1) {
00185         info = 6;
00186     } else if (*incx == 0) {
00187         info = 8;
00188     } else if (*incy == 0) {
00189         info = 11;
00190     }
00191     if (info != 0) {
00192         xerbla_("SLA_GBAMV ", &info);
00193         return 0;
00194     }
00195 
00196 /*     Quick return if possible. */
00197 
00198     if (*m == 0 || *n == 0 || *alpha == 0.f && *beta == 1.f) {
00199         return 0;
00200     }
00201 
00202 /*     Set  LENX  and  LENY, the lengths of the vectors x and y, and set */
00203 /*     up the start points in  X  and  Y. */
00204 
00205     if (*trans == ilatrans_("N")) {
00206         lenx = *n;
00207         leny = *m;
00208     } else {
00209         lenx = *m;
00210         leny = *n;
00211     }
00212     if (*incx > 0) {
00213         kx = 1;
00214     } else {
00215         kx = 1 - (lenx - 1) * *incx;
00216     }
00217     if (*incy > 0) {
00218         ky = 1;
00219     } else {
00220         ky = 1 - (leny - 1) * *incy;
00221     }
00222 
00223 /*     Set SAFE1 essentially to be the underflow threshold times the */
00224 /*     number of additions in each row. */
00225 
00226     safe1 = slamch_("Safe minimum");
00227     safe1 = (*n + 1) * safe1;
00228 
00229 /*     Form  y := alpha*abs(A)*abs(x) + beta*abs(y). */
00230 
00231 /*     The O(M*N) SYMB_ZERO tests could be replaced by O(N) queries to */
00232 /*     the inexact flag.  Still doesn't help change the iteration order */
00233 /*     to per-column. */
00234 
00235     kd = *ku + 1;
00236     iy = ky;
00237     if (*incx == 1) {
00238         i__1 = leny;
00239         for (i__ = 1; i__ <= i__1; ++i__) {
00240             if (*beta == 0.f) {
00241                 symb_zero__ = TRUE_;
00242                 y[iy] = 0.f;
00243             } else if (y[iy] == 0.f) {
00244                 symb_zero__ = TRUE_;
00245             } else {
00246                 symb_zero__ = FALSE_;
00247                 y[iy] = *beta * (r__1 = y[iy], dabs(r__1));
00248             }
00249             if (*alpha != 0.f) {
00250 /* Computing MAX */
00251                 i__2 = i__ - *ku;
00252 /* Computing MIN */
00253                 i__4 = i__ + *kl;
00254                 i__3 = min(i__4,lenx);
00255                 for (j = max(i__2,1); j <= i__3; ++j) {
00256                     if (*trans == ilatrans_("N")) {
00257                         temp = (r__1 = ab[kd + i__ - j + j * ab_dim1], dabs(
00258                                 r__1));
00259                     } else {
00260                         temp = (r__1 = ab[j + (kd + i__ - j) * ab_dim1], dabs(
00261                                 r__1));
00262                     }
00263                     symb_zero__ = symb_zero__ && (x[j] == 0.f || temp == 0.f);
00264                     y[iy] += *alpha * (r__1 = x[j], dabs(r__1)) * temp;
00265                 }
00266             }
00267             if (! symb_zero__) {
00268                 y[iy] += r_sign(&safe1, &y[iy]);
00269             }
00270             iy += *incy;
00271         }
00272     } else {
00273         i__1 = leny;
00274         for (i__ = 1; i__ <= i__1; ++i__) {
00275             if (*beta == 0.f) {
00276                 symb_zero__ = TRUE_;
00277                 y[iy] = 0.f;
00278             } else if (y[iy] == 0.f) {
00279                 symb_zero__ = TRUE_;
00280             } else {
00281                 symb_zero__ = FALSE_;
00282                 y[iy] = *beta * (r__1 = y[iy], dabs(r__1));
00283             }
00284             if (*alpha != 0.f) {
00285                 jx = kx;
00286 /* Computing MAX */
00287                 i__3 = i__ - *ku;
00288 /* Computing MIN */
00289                 i__4 = i__ + *kl;
00290                 i__2 = min(i__4,lenx);
00291                 for (j = max(i__3,1); j <= i__2; ++j) {
00292                     if (*trans == ilatrans_("N")) {
00293                         temp = (r__1 = ab[kd + i__ - j + j * ab_dim1], dabs(
00294                                 r__1));
00295                     } else {
00296                         temp = (r__1 = ab[j + (kd + i__ - j) * ab_dim1], dabs(
00297                                 r__1));
00298                     }
00299                     symb_zero__ = symb_zero__ && (x[jx] == 0.f || temp == 0.f)
00300                             ;
00301                     y[iy] += *alpha * (r__1 = x[jx], dabs(r__1)) * temp;
00302                     jx += *incx;
00303                 }
00304             }
00305             if (! symb_zero__) {
00306                 y[iy] += r_sign(&safe1, &y[iy]);
00307             }
00308             iy += *incy;
00309         }
00310     }
00311 
00312     return 0;
00313 
00314 /*     End of SLA_GBAMV */
00315 
00316 } /* sla_gbamv__ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:09