sggrqf.c
Go to the documentation of this file.
00001 /* sggrqf.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 static integer c_n1 = -1;
00020 
00021 /* Subroutine */ int sggrqf_(integer *m, integer *p, integer *n, real *a, 
00022         integer *lda, real *taua, real *b, integer *ldb, real *taub, real *
00023         work, integer *lwork, integer *info)
00024 {
00025     /* System generated locals */
00026     integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
00027 
00028     /* Local variables */
00029     integer nb, nb1, nb2, nb3, lopt;
00030     extern /* Subroutine */ int xerbla_(char *, integer *);
00031     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
00032             integer *, integer *);
00033     extern /* Subroutine */ int sgeqrf_(integer *, integer *, real *, integer 
00034             *, real *, real *, integer *, integer *), sgerqf_(integer *, 
00035             integer *, real *, integer *, real *, real *, integer *, integer *
00036 );
00037     integer lwkopt;
00038     logical lquery;
00039     extern /* Subroutine */ int sormrq_(char *, char *, integer *, integer *, 
00040             integer *, real *, integer *, real *, real *, integer *, real *, 
00041             integer *, integer *);
00042 
00043 
00044 /*  -- LAPACK routine (version 3.2) -- */
00045 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00046 /*     November 2006 */
00047 
00048 /*     .. Scalar Arguments .. */
00049 /*     .. */
00050 /*     .. Array Arguments .. */
00051 /*     .. */
00052 
00053 /*  Purpose */
00054 /*  ======= */
00055 
00056 /*  SGGRQF computes a generalized RQ factorization of an M-by-N matrix A */
00057 /*  and a P-by-N matrix B: */
00058 
00059 /*              A = R*Q,        B = Z*T*Q, */
00060 
00061 /*  where Q is an N-by-N orthogonal matrix, Z is a P-by-P orthogonal */
00062 /*  matrix, and R and T assume one of the forms: */
00063 
00064 /*  if M <= N,  R = ( 0  R12 ) M,   or if M > N,  R = ( R11 ) M-N, */
00065 /*                   N-M  M                           ( R21 ) N */
00066 /*                                                       N */
00067 
00068 /*  where R12 or R21 is upper triangular, and */
00069 
00070 /*  if P >= N,  T = ( T11 ) N  ,   or if P < N,  T = ( T11  T12 ) P, */
00071 /*                  (  0  ) P-N                         P   N-P */
00072 /*                     N */
00073 
00074 /*  where T11 is upper triangular. */
00075 
00076 /*  In particular, if B is square and nonsingular, the GRQ factorization */
00077 /*  of A and B implicitly gives the RQ factorization of A*inv(B): */
00078 
00079 /*               A*inv(B) = (R*inv(T))*Z' */
00080 
00081 /*  where inv(B) denotes the inverse of the matrix B, and Z' denotes the */
00082 /*  transpose of the matrix Z. */
00083 
00084 /*  Arguments */
00085 /*  ========= */
00086 
00087 /*  M       (input) INTEGER */
00088 /*          The number of rows of the matrix A.  M >= 0. */
00089 
00090 /*  P       (input) INTEGER */
00091 /*          The number of rows of the matrix B.  P >= 0. */
00092 
00093 /*  N       (input) INTEGER */
00094 /*          The number of columns of the matrices A and B. N >= 0. */
00095 
00096 /*  A       (input/output) REAL array, dimension (LDA,N) */
00097 /*          On entry, the M-by-N matrix A. */
00098 /*          On exit, if M <= N, the upper triangle of the subarray */
00099 /*          A(1:M,N-M+1:N) contains the M-by-M upper triangular matrix R; */
00100 /*          if M > N, the elements on and above the (M-N)-th subdiagonal */
00101 /*          contain the M-by-N upper trapezoidal matrix R; the remaining */
00102 /*          elements, with the array TAUA, represent the orthogonal */
00103 /*          matrix Q as a product of elementary reflectors (see Further */
00104 /*          Details). */
00105 
00106 /*  LDA     (input) INTEGER */
00107 /*          The leading dimension of the array A. LDA >= max(1,M). */
00108 
00109 /*  TAUA    (output) REAL array, dimension (min(M,N)) */
00110 /*          The scalar factors of the elementary reflectors which */
00111 /*          represent the orthogonal matrix Q (see Further Details). */
00112 
00113 /*  B       (input/output) REAL array, dimension (LDB,N) */
00114 /*          On entry, the P-by-N matrix B. */
00115 /*          On exit, the elements on and above the diagonal of the array */
00116 /*          contain the min(P,N)-by-N upper trapezoidal matrix T (T is */
00117 /*          upper triangular if P >= N); the elements below the diagonal, */
00118 /*          with the array TAUB, represent the orthogonal matrix Z as a */
00119 /*          product of elementary reflectors (see Further Details). */
00120 
00121 /*  LDB     (input) INTEGER */
00122 /*          The leading dimension of the array B. LDB >= max(1,P). */
00123 
00124 /*  TAUB    (output) REAL array, dimension (min(P,N)) */
00125 /*          The scalar factors of the elementary reflectors which */
00126 /*          represent the orthogonal matrix Z (see Further Details). */
00127 
00128 /*  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
00129 /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
00130 
00131 /*  LWORK   (input) INTEGER */
00132 /*          The dimension of the array WORK. LWORK >= max(1,N,M,P). */
00133 /*          For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3), */
00134 /*          where NB1 is the optimal blocksize for the RQ factorization */
00135 /*          of an M-by-N matrix, NB2 is the optimal blocksize for the */
00136 /*          QR factorization of a P-by-N matrix, and NB3 is the optimal */
00137 /*          blocksize for a call of SORMRQ. */
00138 
00139 /*          If LWORK = -1, then a workspace query is assumed; the routine */
00140 /*          only calculates the optimal size of the WORK array, returns */
00141 /*          this value as the first entry of the WORK array, and no error */
00142 /*          message related to LWORK is issued by XERBLA. */
00143 
00144 /*  INFO    (output) INTEGER */
00145 /*          = 0:  successful exit */
00146 /*          < 0:  if INF0= -i, the i-th argument had an illegal value. */
00147 
00148 /*  Further Details */
00149 /*  =============== */
00150 
00151 /*  The matrix Q is represented as a product of elementary reflectors */
00152 
00153 /*     Q = H(1) H(2) . . . H(k), where k = min(m,n). */
00154 
00155 /*  Each H(i) has the form */
00156 
00157 /*     H(i) = I - taua * v * v' */
00158 
00159 /*  where taua is a real scalar, and v is a real vector with */
00160 /*  v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in */
00161 /*  A(m-k+i,1:n-k+i-1), and taua in TAUA(i). */
00162 /*  To form Q explicitly, use LAPACK subroutine SORGRQ. */
00163 /*  To use Q to update another matrix, use LAPACK subroutine SORMRQ. */
00164 
00165 /*  The matrix Z is represented as a product of elementary reflectors */
00166 
00167 /*     Z = H(1) H(2) . . . H(k), where k = min(p,n). */
00168 
00169 /*  Each H(i) has the form */
00170 
00171 /*     H(i) = I - taub * v * v' */
00172 
00173 /*  where taub is a real scalar, and v is a real vector with */
00174 /*  v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in B(i+1:p,i), */
00175 /*  and taub in TAUB(i). */
00176 /*  To form Z explicitly, use LAPACK subroutine SORGQR. */
00177 /*  To use Z to update another matrix, use LAPACK subroutine SORMQR. */
00178 
00179 /*  ===================================================================== */
00180 
00181 /*     .. Local Scalars .. */
00182 /*     .. */
00183 /*     .. External Subroutines .. */
00184 /*     .. */
00185 /*     .. External Functions .. */
00186 /*     .. */
00187 /*     .. Intrinsic Functions .. */
00188 /*     .. */
00189 /*     .. Executable Statements .. */
00190 
00191 /*     Test the input parameters */
00192 
00193     /* Parameter adjustments */
00194     a_dim1 = *lda;
00195     a_offset = 1 + a_dim1;
00196     a -= a_offset;
00197     --taua;
00198     b_dim1 = *ldb;
00199     b_offset = 1 + b_dim1;
00200     b -= b_offset;
00201     --taub;
00202     --work;
00203 
00204     /* Function Body */
00205     *info = 0;
00206     nb1 = ilaenv_(&c__1, "SGERQF", " ", m, n, &c_n1, &c_n1);
00207     nb2 = ilaenv_(&c__1, "SGEQRF", " ", p, n, &c_n1, &c_n1);
00208     nb3 = ilaenv_(&c__1, "SORMRQ", " ", m, n, p, &c_n1);
00209 /* Computing MAX */
00210     i__1 = max(nb1,nb2);
00211     nb = max(i__1,nb3);
00212 /* Computing MAX */
00213     i__1 = max(*n,*m);
00214     lwkopt = max(i__1,*p) * nb;
00215     work[1] = (real) lwkopt;
00216     lquery = *lwork == -1;
00217     if (*m < 0) {
00218         *info = -1;
00219     } else if (*p < 0) {
00220         *info = -2;
00221     } else if (*n < 0) {
00222         *info = -3;
00223     } else if (*lda < max(1,*m)) {
00224         *info = -5;
00225     } else if (*ldb < max(1,*p)) {
00226         *info = -8;
00227     } else /* if(complicated condition) */ {
00228 /* Computing MAX */
00229         i__1 = max(1,*m), i__1 = max(i__1,*p);
00230         if (*lwork < max(i__1,*n) && ! lquery) {
00231             *info = -11;
00232         }
00233     }
00234     if (*info != 0) {
00235         i__1 = -(*info);
00236         xerbla_("SGGRQF", &i__1);
00237         return 0;
00238     } else if (lquery) {
00239         return 0;
00240     }
00241 
00242 /*     RQ factorization of M-by-N matrix A: A = R*Q */
00243 
00244     sgerqf_(m, n, &a[a_offset], lda, &taua[1], &work[1], lwork, info);
00245     lopt = work[1];
00246 
00247 /*     Update B := B*Q' */
00248 
00249     i__1 = min(*m,*n);
00250 /* Computing MAX */
00251     i__2 = 1, i__3 = *m - *n + 1;
00252     sormrq_("Right", "Transpose", p, n, &i__1, &a[max(i__2, i__3)+ a_dim1], 
00253             lda, &taua[1], &b[b_offset], ldb, &work[1], lwork, info);
00254 /* Computing MAX */
00255     i__1 = lopt, i__2 = (integer) work[1];
00256     lopt = max(i__1,i__2);
00257 
00258 /*     QR factorization of P-by-N matrix B: B = Z*T */
00259 
00260     sgeqrf_(p, n, &b[b_offset], ldb, &taub[1], &work[1], lwork, info);
00261 /* Computing MAX */
00262     i__1 = lopt, i__2 = (integer) work[1];
00263     work[1] = (real) max(i__1,i__2);
00264 
00265     return 0;
00266 
00267 /*     End of SGGRQF */
00268 
00269 } /* sggrqf_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:08