sgeqr2.c
Go to the documentation of this file.
00001 /* sgeqr2.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 
00020 /* Subroutine */ int sgeqr2_(integer *m, integer *n, real *a, integer *lda, 
00021         real *tau, real *work, integer *info)
00022 {
00023     /* System generated locals */
00024     integer a_dim1, a_offset, i__1, i__2, i__3;
00025 
00026     /* Local variables */
00027     integer i__, k;
00028     real aii;
00029     extern /* Subroutine */ int slarf_(char *, integer *, integer *, real *, 
00030             integer *, real *, real *, integer *, real *), xerbla_(
00031             char *, integer *), slarfp_(integer *, real *, real *, 
00032             integer *, real *);
00033 
00034 
00035 /*  -- LAPACK routine (version 3.2) -- */
00036 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00037 /*     November 2006 */
00038 
00039 /*     .. Scalar Arguments .. */
00040 /*     .. */
00041 /*     .. Array Arguments .. */
00042 /*     .. */
00043 
00044 /*  Purpose */
00045 /*  ======= */
00046 
00047 /*  SGEQR2 computes a QR factorization of a real m by n matrix A: */
00048 /*  A = Q * R. */
00049 
00050 /*  Arguments */
00051 /*  ========= */
00052 
00053 /*  M       (input) INTEGER */
00054 /*          The number of rows of the matrix A.  M >= 0. */
00055 
00056 /*  N       (input) INTEGER */
00057 /*          The number of columns of the matrix A.  N >= 0. */
00058 
00059 /*  A       (input/output) REAL array, dimension (LDA,N) */
00060 /*          On entry, the m by n matrix A. */
00061 /*          On exit, the elements on and above the diagonal of the array */
00062 /*          contain the min(m,n) by n upper trapezoidal matrix R (R is */
00063 /*          upper triangular if m >= n); the elements below the diagonal, */
00064 /*          with the array TAU, represent the orthogonal matrix Q as a */
00065 /*          product of elementary reflectors (see Further Details). */
00066 
00067 /*  LDA     (input) INTEGER */
00068 /*          The leading dimension of the array A.  LDA >= max(1,M). */
00069 
00070 /*  TAU     (output) REAL array, dimension (min(M,N)) */
00071 /*          The scalar factors of the elementary reflectors (see Further */
00072 /*          Details). */
00073 
00074 /*  WORK    (workspace) REAL array, dimension (N) */
00075 
00076 /*  INFO    (output) INTEGER */
00077 /*          = 0: successful exit */
00078 /*          < 0: if INFO = -i, the i-th argument had an illegal value */
00079 
00080 /*  Further Details */
00081 /*  =============== */
00082 
00083 /*  The matrix Q is represented as a product of elementary reflectors */
00084 
00085 /*     Q = H(1) H(2) . . . H(k), where k = min(m,n). */
00086 
00087 /*  Each H(i) has the form */
00088 
00089 /*     H(i) = I - tau * v * v' */
00090 
00091 /*  where tau is a real scalar, and v is a real vector with */
00092 /*  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), */
00093 /*  and tau in TAU(i). */
00094 
00095 /*  ===================================================================== */
00096 
00097 /*     .. Parameters .. */
00098 /*     .. */
00099 /*     .. Local Scalars .. */
00100 /*     .. */
00101 /*     .. External Subroutines .. */
00102 /*     .. */
00103 /*     .. Intrinsic Functions .. */
00104 /*     .. */
00105 /*     .. Executable Statements .. */
00106 
00107 /*     Test the input arguments */
00108 
00109     /* Parameter adjustments */
00110     a_dim1 = *lda;
00111     a_offset = 1 + a_dim1;
00112     a -= a_offset;
00113     --tau;
00114     --work;
00115 
00116     /* Function Body */
00117     *info = 0;
00118     if (*m < 0) {
00119         *info = -1;
00120     } else if (*n < 0) {
00121         *info = -2;
00122     } else if (*lda < max(1,*m)) {
00123         *info = -4;
00124     }
00125     if (*info != 0) {
00126         i__1 = -(*info);
00127         xerbla_("SGEQR2", &i__1);
00128         return 0;
00129     }
00130 
00131     k = min(*m,*n);
00132 
00133     i__1 = k;
00134     for (i__ = 1; i__ <= i__1; ++i__) {
00135 
00136 /*        Generate elementary reflector H(i) to annihilate A(i+1:m,i) */
00137 
00138         i__2 = *m - i__ + 1;
00139 /* Computing MIN */
00140         i__3 = i__ + 1;
00141         slarfp_(&i__2, &a[i__ + i__ * a_dim1], &a[min(i__3, *m)+ i__ * a_dim1]
00142 , &c__1, &tau[i__]);
00143         if (i__ < *n) {
00144 
00145 /*           Apply H(i) to A(i:m,i+1:n) from the left */
00146 
00147             aii = a[i__ + i__ * a_dim1];
00148             a[i__ + i__ * a_dim1] = 1.f;
00149             i__2 = *m - i__ + 1;
00150             i__3 = *n - i__;
00151             slarf_("Left", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &tau[
00152                     i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]);
00153             a[i__ + i__ * a_dim1] = aii;
00154         }
00155 /* L10: */
00156     }
00157     return 0;
00158 
00159 /*     End of SGEQR2 */
00160 
00161 } /* sgeqr2_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:06