00001 /* sgbequ.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int sgbequ_(integer *m, integer *n, integer *kl, integer *ku, 00017 real *ab, integer *ldab, real *r__, real *c__, real *rowcnd, real * 00018 colcnd, real *amax, integer *info) 00019 { 00020 /* System generated locals */ 00021 integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4; 00022 real r__1, r__2, r__3; 00023 00024 /* Local variables */ 00025 integer i__, j, kd; 00026 real rcmin, rcmax; 00027 extern doublereal slamch_(char *); 00028 extern /* Subroutine */ int xerbla_(char *, integer *); 00029 real bignum, smlnum; 00030 00031 00032 /* -- LAPACK routine (version 3.2) -- */ 00033 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00034 /* November 2006 */ 00035 00036 /* .. Scalar Arguments .. */ 00037 /* .. */ 00038 /* .. Array Arguments .. */ 00039 /* .. */ 00040 00041 /* Purpose */ 00042 /* ======= */ 00043 00044 /* SGBEQU computes row and column scalings intended to equilibrate an */ 00045 /* M-by-N band matrix A and reduce its condition number. R returns the */ 00046 /* row scale factors and C the column scale factors, chosen to try to */ 00047 /* make the largest element in each row and column of the matrix B with */ 00048 /* elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1. */ 00049 00050 /* R(i) and C(j) are restricted to be between SMLNUM = smallest safe */ 00051 /* number and BIGNUM = largest safe number. Use of these scaling */ 00052 /* factors is not guaranteed to reduce the condition number of A but */ 00053 /* works well in practice. */ 00054 00055 /* Arguments */ 00056 /* ========= */ 00057 00058 /* M (input) INTEGER */ 00059 /* The number of rows of the matrix A. M >= 0. */ 00060 00061 /* N (input) INTEGER */ 00062 /* The number of columns of the matrix A. N >= 0. */ 00063 00064 /* KL (input) INTEGER */ 00065 /* The number of subdiagonals within the band of A. KL >= 0. */ 00066 00067 /* KU (input) INTEGER */ 00068 /* The number of superdiagonals within the band of A. KU >= 0. */ 00069 00070 /* AB (input) REAL array, dimension (LDAB,N) */ 00071 /* The band matrix A, stored in rows 1 to KL+KU+1. The j-th */ 00072 /* column of A is stored in the j-th column of the array AB as */ 00073 /* follows: */ 00074 /* AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl). */ 00075 00076 /* LDAB (input) INTEGER */ 00077 /* The leading dimension of the array AB. LDAB >= KL+KU+1. */ 00078 00079 /* R (output) REAL array, dimension (M) */ 00080 /* If INFO = 0, or INFO > M, R contains the row scale factors */ 00081 /* for A. */ 00082 00083 /* C (output) REAL array, dimension (N) */ 00084 /* If INFO = 0, C contains the column scale factors for A. */ 00085 00086 /* ROWCND (output) REAL */ 00087 /* If INFO = 0 or INFO > M, ROWCND contains the ratio of the */ 00088 /* smallest R(i) to the largest R(i). If ROWCND >= 0.1 and */ 00089 /* AMAX is neither too large nor too small, it is not worth */ 00090 /* scaling by R. */ 00091 00092 /* COLCND (output) REAL */ 00093 /* If INFO = 0, COLCND contains the ratio of the smallest */ 00094 /* C(i) to the largest C(i). If COLCND >= 0.1, it is not */ 00095 /* worth scaling by C. */ 00096 00097 /* AMAX (output) REAL */ 00098 /* Absolute value of largest matrix element. If AMAX is very */ 00099 /* close to overflow or very close to underflow, the matrix */ 00100 /* should be scaled. */ 00101 00102 /* INFO (output) INTEGER */ 00103 /* = 0: successful exit */ 00104 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00105 /* > 0: if INFO = i, and i is */ 00106 /* <= M: the i-th row of A is exactly zero */ 00107 /* > M: the (i-M)-th column of A is exactly zero */ 00108 00109 /* ===================================================================== */ 00110 00111 /* .. Parameters .. */ 00112 /* .. */ 00113 /* .. Local Scalars .. */ 00114 /* .. */ 00115 /* .. External Functions .. */ 00116 /* .. */ 00117 /* .. External Subroutines .. */ 00118 /* .. */ 00119 /* .. Intrinsic Functions .. */ 00120 /* .. */ 00121 /* .. Executable Statements .. */ 00122 00123 /* Test the input parameters */ 00124 00125 /* Parameter adjustments */ 00126 ab_dim1 = *ldab; 00127 ab_offset = 1 + ab_dim1; 00128 ab -= ab_offset; 00129 --r__; 00130 --c__; 00131 00132 /* Function Body */ 00133 *info = 0; 00134 if (*m < 0) { 00135 *info = -1; 00136 } else if (*n < 0) { 00137 *info = -2; 00138 } else if (*kl < 0) { 00139 *info = -3; 00140 } else if (*ku < 0) { 00141 *info = -4; 00142 } else if (*ldab < *kl + *ku + 1) { 00143 *info = -6; 00144 } 00145 if (*info != 0) { 00146 i__1 = -(*info); 00147 xerbla_("SGBEQU", &i__1); 00148 return 0; 00149 } 00150 00151 /* Quick return if possible */ 00152 00153 if (*m == 0 || *n == 0) { 00154 *rowcnd = 1.f; 00155 *colcnd = 1.f; 00156 *amax = 0.f; 00157 return 0; 00158 } 00159 00160 /* Get machine constants. */ 00161 00162 smlnum = slamch_("S"); 00163 bignum = 1.f / smlnum; 00164 00165 /* Compute row scale factors. */ 00166 00167 i__1 = *m; 00168 for (i__ = 1; i__ <= i__1; ++i__) { 00169 r__[i__] = 0.f; 00170 /* L10: */ 00171 } 00172 00173 /* Find the maximum element in each row. */ 00174 00175 kd = *ku + 1; 00176 i__1 = *n; 00177 for (j = 1; j <= i__1; ++j) { 00178 /* Computing MAX */ 00179 i__2 = j - *ku; 00180 /* Computing MIN */ 00181 i__4 = j + *kl; 00182 i__3 = min(i__4,*m); 00183 for (i__ = max(i__2,1); i__ <= i__3; ++i__) { 00184 /* Computing MAX */ 00185 r__2 = r__[i__], r__3 = (r__1 = ab[kd + i__ - j + j * ab_dim1], 00186 dabs(r__1)); 00187 r__[i__] = dmax(r__2,r__3); 00188 /* L20: */ 00189 } 00190 /* L30: */ 00191 } 00192 00193 /* Find the maximum and minimum scale factors. */ 00194 00195 rcmin = bignum; 00196 rcmax = 0.f; 00197 i__1 = *m; 00198 for (i__ = 1; i__ <= i__1; ++i__) { 00199 /* Computing MAX */ 00200 r__1 = rcmax, r__2 = r__[i__]; 00201 rcmax = dmax(r__1,r__2); 00202 /* Computing MIN */ 00203 r__1 = rcmin, r__2 = r__[i__]; 00204 rcmin = dmin(r__1,r__2); 00205 /* L40: */ 00206 } 00207 *amax = rcmax; 00208 00209 if (rcmin == 0.f) { 00210 00211 /* Find the first zero scale factor and return an error code. */ 00212 00213 i__1 = *m; 00214 for (i__ = 1; i__ <= i__1; ++i__) { 00215 if (r__[i__] == 0.f) { 00216 *info = i__; 00217 return 0; 00218 } 00219 /* L50: */ 00220 } 00221 } else { 00222 00223 /* Invert the scale factors. */ 00224 00225 i__1 = *m; 00226 for (i__ = 1; i__ <= i__1; ++i__) { 00227 /* Computing MIN */ 00228 /* Computing MAX */ 00229 r__2 = r__[i__]; 00230 r__1 = dmax(r__2,smlnum); 00231 r__[i__] = 1.f / dmin(r__1,bignum); 00232 /* L60: */ 00233 } 00234 00235 /* Compute ROWCND = min(R(I)) / max(R(I)) */ 00236 00237 *rowcnd = dmax(rcmin,smlnum) / dmin(rcmax,bignum); 00238 } 00239 00240 /* Compute column scale factors */ 00241 00242 i__1 = *n; 00243 for (j = 1; j <= i__1; ++j) { 00244 c__[j] = 0.f; 00245 /* L70: */ 00246 } 00247 00248 /* Find the maximum element in each column, */ 00249 /* assuming the row scaling computed above. */ 00250 00251 kd = *ku + 1; 00252 i__1 = *n; 00253 for (j = 1; j <= i__1; ++j) { 00254 /* Computing MAX */ 00255 i__3 = j - *ku; 00256 /* Computing MIN */ 00257 i__4 = j + *kl; 00258 i__2 = min(i__4,*m); 00259 for (i__ = max(i__3,1); i__ <= i__2; ++i__) { 00260 /* Computing MAX */ 00261 r__2 = c__[j], r__3 = (r__1 = ab[kd + i__ - j + j * ab_dim1], 00262 dabs(r__1)) * r__[i__]; 00263 c__[j] = dmax(r__2,r__3); 00264 /* L80: */ 00265 } 00266 /* L90: */ 00267 } 00268 00269 /* Find the maximum and minimum scale factors. */ 00270 00271 rcmin = bignum; 00272 rcmax = 0.f; 00273 i__1 = *n; 00274 for (j = 1; j <= i__1; ++j) { 00275 /* Computing MIN */ 00276 r__1 = rcmin, r__2 = c__[j]; 00277 rcmin = dmin(r__1,r__2); 00278 /* Computing MAX */ 00279 r__1 = rcmax, r__2 = c__[j]; 00280 rcmax = dmax(r__1,r__2); 00281 /* L100: */ 00282 } 00283 00284 if (rcmin == 0.f) { 00285 00286 /* Find the first zero scale factor and return an error code. */ 00287 00288 i__1 = *n; 00289 for (j = 1; j <= i__1; ++j) { 00290 if (c__[j] == 0.f) { 00291 *info = *m + j; 00292 return 0; 00293 } 00294 /* L110: */ 00295 } 00296 } else { 00297 00298 /* Invert the scale factors. */ 00299 00300 i__1 = *n; 00301 for (j = 1; j <= i__1; ++j) { 00302 /* Computing MIN */ 00303 /* Computing MAX */ 00304 r__2 = c__[j]; 00305 r__1 = dmax(r__2,smlnum); 00306 c__[j] = 1.f / dmin(r__1,bignum); 00307 /* L120: */ 00308 } 00309 00310 /* Compute COLCND = min(C(J)) / max(C(J)) */ 00311 00312 *colcnd = dmax(rcmin,smlnum) / dmin(rcmax,bignum); 00313 } 00314 00315 return 0; 00316 00317 /* End of SGBEQU */ 00318 00319 } /* sgbequ_ */