sdrvev.c
Go to the documentation of this file.
00001 /* sdrvev.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static real c_b17 = 0.f;
00019 static integer c__0 = 0;
00020 static real c_b31 = 1.f;
00021 static integer c__4 = 4;
00022 static integer c__6 = 6;
00023 static integer c__1 = 1;
00024 static integer c__2 = 2;
00025 
00026 /* Subroutine */ int sdrvev_(integer *nsizes, integer *nn, integer *ntypes, 
00027         logical *dotype, integer *iseed, real *thresh, integer *nounit, real *
00028         a, integer *lda, real *h__, real *wr, real *wi, real *wr1, real *wi1, 
00029         real *vl, integer *ldvl, real *vr, integer *ldvr, real *lre, integer *
00030         ldlre, real *result, real *work, integer *nwork, integer *iwork, 
00031         integer *info)
00032 {
00033     /* Initialized data */
00034 
00035     static integer ktype[21] = { 1,2,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,9,9,9 };
00036     static integer kmagn[21] = { 1,1,1,1,1,1,2,3,1,1,1,1,1,1,1,1,2,3,1,2,3 };
00037     static integer kmode[21] = { 0,0,0,4,3,1,4,4,4,3,1,5,4,3,1,5,5,5,4,3,1 };
00038     static integer kconds[21] = { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,0,0,0 };
00039 
00040     /* Format strings */
00041     static char fmt_9993[] = "(\002 SDRVEV: \002,a,\002 returned INFO=\002,i"
00042             "6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, ISEED="
00043             "(\002,3(i5,\002,\002),i5,\002)\002)";
00044     static char fmt_9999[] = "(/1x,a3,\002 -- Real Eigenvalue-Eigenvector De"
00045             "composition\002,\002 Driver\002,/\002 Matrix types (see SDRVEV f"
00046             "or details): \002)";
00047     static char fmt_9998[] = "(/\002 Special Matrices:\002,/\002  1=Zero mat"
00048             "rix.             \002,\002           \002,\002  5=Diagonal: geom"
00049             "etr. spaced entries.\002,/\002  2=Identity matrix.              "
00050             "      \002,\002  6=Diagona\002,\002l: clustered entries.\002,"
00051             "/\002  3=Transposed Jordan block.  \002,\002          \002,\002 "
00052             " 7=Diagonal: large, evenly spaced.\002,/\002  \002,\0024=Diagona"
00053             "l: evenly spaced entries.    \002,\002  8=Diagonal: s\002,\002ma"
00054             "ll, evenly spaced.\002)";
00055     static char fmt_9997[] = "(\002 Dense, Non-Symmetric Matrices:\002,/\002"
00056             "  9=Well-cond., ev\002,\002enly spaced eigenvals.\002,\002 14=Il"
00057             "l-cond., geomet. spaced e\002,\002igenals.\002,/\002 10=Well-con"
00058             "d., geom. spaced eigenvals. \002,\002 15=Ill-conditioned, cluste"
00059             "red e.vals.\002,/\002 11=Well-cond\002,\002itioned, clustered e."
00060             "vals. \002,\002 16=Ill-cond., random comp\002,\002lex \002,/\002"
00061             " 12=Well-cond., random complex \002,6x,\002   \002,\002 17=Ill-c"
00062             "ond., large rand. complx \002,/\002 13=Ill-condi\002,\002tioned,"
00063             " evenly spaced.     \002,\002 18=Ill-cond., small rand.\002,\002"
00064             " complx \002)";
00065     static char fmt_9996[] = "(\002 19=Matrix with random O(1) entries.   "
00066             " \002,\002 21=Matrix \002,\002with small random entries.\002,"
00067             "/\002 20=Matrix with large ran\002,\002dom entries.   \002,/)";
00068     static char fmt_9995[] = "(\002 Tests performed with test threshold ="
00069             "\002,f8.2,//\002 1 = | A VR - VR W | / ( n |A| ulp ) \002,/\002 "
00070             "2 = | transpose(A) VL - VL W | / ( n |A| ulp ) \002,/\002 3 = | "
00071             "|VR(i)| - 1 | / ulp \002,/\002 4 = | |VL(i)| - 1 | / ulp \002,"
00072             "/\002 5 = 0 if W same no matter if VR or VL computed,\002,\002 1"
00073             "/ulp otherwise\002,/\002 6 = 0 if VR same no matter if VL comput"
00074             "ed,\002,\002  1/ulp otherwise\002,/\002 7 = 0 if VL same no matt"
00075             "er if VR computed,\002,\002  1/ulp otherwise\002,/)";
00076     static char fmt_9994[] = "(\002 N=\002,i5,\002, IWK=\002,i2,\002, seed"
00077             "=\002,4(i4,\002,\002),\002 type \002,i2,\002, test(\002,i2,\002)="
00078             "\002,g10.3)";
00079 
00080     /* System generated locals */
00081     integer a_dim1, a_offset, h_dim1, h_offset, lre_dim1, lre_offset, vl_dim1,
00082              vl_offset, vr_dim1, vr_offset, i__1, i__2, i__3, i__4;
00083     real r__1, r__2, r__3, r__4, r__5;
00084 
00085     /* Builtin functions */
00086     /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
00087     double sqrt(doublereal);
00088     integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
00089 
00090     /* Local variables */
00091     integer j, n, jj;
00092     real dum[1], res[2];
00093     integer iwk;
00094     real ulp, vmx, cond;
00095     integer jcol;
00096     char path[3];
00097     integer nmax;
00098     real unfl, ovfl, tnrm, vrmx, vtst;
00099     extern doublereal snrm2_(integer *, real *, integer *);
00100     logical badnn;
00101     integer nfail, imode, iinfo;
00102     real conds;
00103     extern /* Subroutine */ int sget22_(char *, char *, char *, integer *, 
00104             real *, integer *, real *, integer *, real *, real *, real *, 
00105             real *), sgeev_(char *, char *, integer *, 
00106              real *, integer *, real *, real *, real *, integer *, real *, 
00107             integer *, real *, integer *, integer *);
00108     real anorm;
00109     integer jsize, nerrs, itype, jtype, ntest;
00110     real rtulp;
00111     extern doublereal slapy2_(real *, real *);
00112     extern /* Subroutine */ int slabad_(real *, real *);
00113     char adumma[1*1];
00114     extern doublereal slamch_(char *);
00115     integer idumma[1];
00116     extern /* Subroutine */ int xerbla_(char *, integer *);
00117     integer ioldsd[4];
00118     extern /* Subroutine */ int slatme_(integer *, char *, integer *, real *, 
00119             integer *, real *, real *, char *, char *, char *, char *, real *, 
00120              integer *, real *, integer *, integer *, real *, real *, integer 
00121             *, real *, integer *), 
00122             slacpy_(char *, integer *, integer *, real *, integer *, real *, 
00123             integer *), slaset_(char *, integer *, integer *, real *, 
00124             real *, real *, integer *), slatmr_(integer *, integer *, 
00125             char *, integer *, char *, real *, integer *, real *, real *, 
00126             char *, char *, real *, integer *, real *, real *, integer *, 
00127             real *, char *, integer *, integer *, integer *, real *, real *, 
00128             char *, real *, integer *, integer *, integer *);
00129     integer ntestf;
00130     extern /* Subroutine */ int slasum_(char *, integer *, integer *, integer 
00131             *), slatms_(integer *, integer *, char *, integer *, char 
00132             *, real *, integer *, real *, real *, integer *, integer *, char *
00133 , real *, integer *, real *, integer *);
00134     real ulpinv;
00135     integer nnwork;
00136     real rtulpi;
00137     integer mtypes, ntestt;
00138 
00139     /* Fortran I/O blocks */
00140     static cilist io___32 = { 0, 0, 0, fmt_9993, 0 };
00141     static cilist io___35 = { 0, 0, 0, fmt_9993, 0 };
00142     static cilist io___43 = { 0, 0, 0, fmt_9993, 0 };
00143     static cilist io___44 = { 0, 0, 0, fmt_9993, 0 };
00144     static cilist io___45 = { 0, 0, 0, fmt_9993, 0 };
00145     static cilist io___48 = { 0, 0, 0, fmt_9999, 0 };
00146     static cilist io___49 = { 0, 0, 0, fmt_9998, 0 };
00147     static cilist io___50 = { 0, 0, 0, fmt_9997, 0 };
00148     static cilist io___51 = { 0, 0, 0, fmt_9996, 0 };
00149     static cilist io___52 = { 0, 0, 0, fmt_9995, 0 };
00150     static cilist io___53 = { 0, 0, 0, fmt_9994, 0 };
00151 
00152 
00153 
00154 /*  -- LAPACK test routine (version 3.1) -- */
00155 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00156 /*     November 2006 */
00157 
00158 /*     .. Scalar Arguments .. */
00159 /*     .. */
00160 /*     .. Array Arguments .. */
00161 /*     .. */
00162 
00163 /*  Purpose */
00164 /*  ======= */
00165 
00166 /*     SDRVEV  checks the nonsymmetric eigenvalue problem driver SGEEV. */
00167 
00168 /*     When SDRVEV is called, a number of matrix "sizes" ("n's") and a */
00169 /*     number of matrix "types" are specified.  For each size ("n") */
00170 /*     and each type of matrix, one matrix will be generated and used */
00171 /*     to test the nonsymmetric eigenroutines.  For each matrix, 7 */
00172 /*     tests will be performed: */
00173 
00174 /*     (1)     | A * VR - VR * W | / ( n |A| ulp ) */
00175 
00176 /*       Here VR is the matrix of unit right eigenvectors. */
00177 /*       W is a block diagonal matrix, with a 1x1 block for each */
00178 /*       real eigenvalue and a 2x2 block for each complex conjugate */
00179 /*       pair.  If eigenvalues j and j+1 are a complex conjugate pair, */
00180 /*       so WR(j) = WR(j+1) = wr and WI(j) = - WI(j+1) = wi, then the */
00181 /*       2 x 2 block corresponding to the pair will be: */
00182 
00183 /*               (  wr  wi  ) */
00184 /*               ( -wi  wr  ) */
00185 
00186 /*       Such a block multiplying an n x 2 matrix  ( ur ui ) on the */
00187 /*       right will be the same as multiplying  ur + i*ui  by  wr + i*wi. */
00188 
00189 /*     (2)     | A**H * VL - VL * W**H | / ( n |A| ulp ) */
00190 
00191 /*       Here VL is the matrix of unit left eigenvectors, A**H is the */
00192 /*       conjugate transpose of A, and W is as above. */
00193 
00194 /*     (3)     | |VR(i)| - 1 | / ulp and whether largest component real */
00195 
00196 /*       VR(i) denotes the i-th column of VR. */
00197 
00198 /*     (4)     | |VL(i)| - 1 | / ulp and whether largest component real */
00199 
00200 /*       VL(i) denotes the i-th column of VL. */
00201 
00202 /*     (5)     W(full) = W(partial) */
00203 
00204 /*       W(full) denotes the eigenvalues computed when both VR and VL */
00205 /*       are also computed, and W(partial) denotes the eigenvalues */
00206 /*       computed when only W, only W and VR, or only W and VL are */
00207 /*       computed. */
00208 
00209 /*     (6)     VR(full) = VR(partial) */
00210 
00211 /*       VR(full) denotes the right eigenvectors computed when both VR */
00212 /*       and VL are computed, and VR(partial) denotes the result */
00213 /*       when only VR is computed. */
00214 
00215 /*      (7)     VL(full) = VL(partial) */
00216 
00217 /*       VL(full) denotes the left eigenvectors computed when both VR */
00218 /*       and VL are also computed, and VL(partial) denotes the result */
00219 /*       when only VL is computed. */
00220 
00221 /*     The "sizes" are specified by an array NN(1:NSIZES); the value of */
00222 /*     each element NN(j) specifies one size. */
00223 /*     The "types" are specified by a logical array DOTYPE( 1:NTYPES ); */
00224 /*     if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. */
00225 /*     Currently, the list of possible types is: */
00226 
00227 /*     (1)  The zero matrix. */
00228 /*     (2)  The identity matrix. */
00229 /*     (3)  A (transposed) Jordan block, with 1's on the diagonal. */
00230 
00231 /*     (4)  A diagonal matrix with evenly spaced entries */
00232 /*          1, ..., ULP  and random signs. */
00233 /*          (ULP = (first number larger than 1) - 1 ) */
00234 /*     (5)  A diagonal matrix with geometrically spaced entries */
00235 /*          1, ..., ULP  and random signs. */
00236 /*     (6)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP */
00237 /*          and random signs. */
00238 
00239 /*     (7)  Same as (4), but multiplied by a constant near */
00240 /*          the overflow threshold */
00241 /*     (8)  Same as (4), but multiplied by a constant near */
00242 /*          the underflow threshold */
00243 
00244 /*     (9)  A matrix of the form  U' T U, where U is orthogonal and */
00245 /*          T has evenly spaced entries 1, ..., ULP with random signs */
00246 /*          on the diagonal and random O(1) entries in the upper */
00247 /*          triangle. */
00248 
00249 /*     (10) A matrix of the form  U' T U, where U is orthogonal and */
00250 /*          T has geometrically spaced entries 1, ..., ULP with random */
00251 /*          signs on the diagonal and random O(1) entries in the upper */
00252 /*          triangle. */
00253 
00254 /*     (11) A matrix of the form  U' T U, where U is orthogonal and */
00255 /*          T has "clustered" entries 1, ULP,..., ULP with random */
00256 /*          signs on the diagonal and random O(1) entries in the upper */
00257 /*          triangle. */
00258 
00259 /*     (12) A matrix of the form  U' T U, where U is orthogonal and */
00260 /*          T has real or complex conjugate paired eigenvalues randomly */
00261 /*          chosen from ( ULP, 1 ) and random O(1) entries in the upper */
00262 /*          triangle. */
00263 
00264 /*     (13) A matrix of the form  X' T X, where X has condition */
00265 /*          SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP */
00266 /*          with random signs on the diagonal and random O(1) entries */
00267 /*          in the upper triangle. */
00268 
00269 /*     (14) A matrix of the form  X' T X, where X has condition */
00270 /*          SQRT( ULP ) and T has geometrically spaced entries */
00271 /*          1, ..., ULP with random signs on the diagonal and random */
00272 /*          O(1) entries in the upper triangle. */
00273 
00274 /*     (15) A matrix of the form  X' T X, where X has condition */
00275 /*          SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP */
00276 /*          with random signs on the diagonal and random O(1) entries */
00277 /*          in the upper triangle. */
00278 
00279 /*     (16) A matrix of the form  X' T X, where X has condition */
00280 /*          SQRT( ULP ) and T has real or complex conjugate paired */
00281 /*          eigenvalues randomly chosen from ( ULP, 1 ) and random */
00282 /*          O(1) entries in the upper triangle. */
00283 
00284 /*     (17) Same as (16), but multiplied by a constant */
00285 /*          near the overflow threshold */
00286 /*     (18) Same as (16), but multiplied by a constant */
00287 /*          near the underflow threshold */
00288 
00289 /*     (19) Nonsymmetric matrix with random entries chosen from (-1,1). */
00290 /*          If N is at least 4, all entries in first two rows and last */
00291 /*          row, and first column and last two columns are zero. */
00292 /*     (20) Same as (19), but multiplied by a constant */
00293 /*          near the overflow threshold */
00294 /*     (21) Same as (19), but multiplied by a constant */
00295 /*          near the underflow threshold */
00296 
00297 /*  Arguments */
00298 /*  ========== */
00299 
00300 /*  NSIZES  (input) INTEGER */
00301 /*          The number of sizes of matrices to use.  If it is zero, */
00302 /*          SDRVEV does nothing.  It must be at least zero. */
00303 
00304 /*  NN      (input) INTEGER array, dimension (NSIZES) */
00305 /*          An array containing the sizes to be used for the matrices. */
00306 /*          Zero values will be skipped.  The values must be at least */
00307 /*          zero. */
00308 
00309 /*  NTYPES  (input) INTEGER */
00310 /*          The number of elements in DOTYPE.   If it is zero, SDRVEV */
00311 /*          does nothing.  It must be at least zero.  If it is MAXTYP+1 */
00312 /*          and NSIZES is 1, then an additional type, MAXTYP+1 is */
00313 /*          defined, which is to use whatever matrix is in A.  This */
00314 /*          is only useful if DOTYPE(1:MAXTYP) is .FALSE. and */
00315 /*          DOTYPE(MAXTYP+1) is .TRUE. . */
00316 
00317 /*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
00318 /*          If DOTYPE(j) is .TRUE., then for each size in NN a */
00319 /*          matrix of that size and of type j will be generated. */
00320 /*          If NTYPES is smaller than the maximum number of types */
00321 /*          defined (PARAMETER MAXTYP), then types NTYPES+1 through */
00322 /*          MAXTYP will not be generated.  If NTYPES is larger */
00323 /*          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) */
00324 /*          will be ignored. */
00325 
00326 /*  ISEED   (input/output) INTEGER array, dimension (4) */
00327 /*          On entry ISEED specifies the seed of the random number */
00328 /*          generator. The array elements should be between 0 and 4095; */
00329 /*          if not they will be reduced mod 4096.  Also, ISEED(4) must */
00330 /*          be odd.  The random number generator uses a linear */
00331 /*          congruential sequence limited to small integers, and so */
00332 /*          should produce machine independent random numbers. The */
00333 /*          values of ISEED are changed on exit, and can be used in the */
00334 /*          next call to SDRVEV to continue the same random number */
00335 /*          sequence. */
00336 
00337 /*  THRESH  (input) REAL */
00338 /*          A test will count as "failed" if the "error", computed as */
00339 /*          described above, exceeds THRESH.  Note that the error */
00340 /*          is scaled to be O(1), so THRESH should be a reasonably */
00341 /*          small multiple of 1, e.g., 10 or 100.  In particular, */
00342 /*          it should not depend on the precision (single vs. double) */
00343 /*          or the size of the matrix.  It must be at least zero. */
00344 
00345 /*  NOUNIT  (input) INTEGER */
00346 /*          The FORTRAN unit number for printing out error messages */
00347 /*          (e.g., if a routine returns INFO not equal to 0.) */
00348 
00349 /*  A       (workspace) REAL array, dimension (LDA, max(NN)) */
00350 /*          Used to hold the matrix whose eigenvalues are to be */
00351 /*          computed.  On exit, A contains the last matrix actually used. */
00352 
00353 /*  LDA     (input) INTEGER */
00354 /*          The leading dimension of A, and H. LDA must be at */
00355 /*          least 1 and at least max(NN). */
00356 
00357 /*  H       (workspace) REAL array, dimension (LDA, max(NN)) */
00358 /*          Another copy of the test matrix A, modified by SGEEV. */
00359 
00360 /*  WR      (workspace) REAL array, dimension (max(NN)) */
00361 /*  WI      (workspace) REAL array, dimension (max(NN)) */
00362 /*          The real and imaginary parts of the eigenvalues of A. */
00363 /*          On exit, WR + WI*i are the eigenvalues of the matrix in A. */
00364 
00365 /*  WR1     (workspace) REAL array, dimension (max(NN)) */
00366 /*  WI1     (workspace) REAL array, dimension (max(NN)) */
00367 /*          Like WR, WI, these arrays contain the eigenvalues of A, */
00368 /*          but those computed when SGEEV only computes a partial */
00369 /*          eigendecomposition, i.e. not the eigenvalues and left */
00370 /*          and right eigenvectors. */
00371 
00372 /*  VL      (workspace) REAL array, dimension (LDVL, max(NN)) */
00373 /*          VL holds the computed left eigenvectors. */
00374 
00375 /*  LDVL    (input) INTEGER */
00376 /*          Leading dimension of VL. Must be at least max(1,max(NN)). */
00377 
00378 /*  VR      (workspace) REAL array, dimension (LDVR, max(NN)) */
00379 /*          VR holds the computed right eigenvectors. */
00380 
00381 /*  LDVR    (input) INTEGER */
00382 /*          Leading dimension of VR. Must be at least max(1,max(NN)). */
00383 
00384 /*  LRE     (workspace) REAL array, dimension (LDLRE,max(NN)) */
00385 /*          LRE holds the computed right or left eigenvectors. */
00386 
00387 /*  LDLRE   (input) INTEGER */
00388 /*          Leading dimension of LRE. Must be at least max(1,max(NN)). */
00389 
00390 /*  RESULT  (output) REAL array, dimension (7) */
00391 /*          The values computed by the seven tests described above. */
00392 /*          The values are currently limited to 1/ulp, to avoid overflow. */
00393 
00394 /*  WORK    (workspace) REAL array, dimension (NWORK) */
00395 
00396 /*  NWORK   (input) INTEGER */
00397 /*          The number of entries in WORK.  This must be at least */
00398 /*          5*NN(j)+2*NN(j)**2 for all j. */
00399 
00400 /*  IWORK   (workspace) INTEGER array, dimension (max(NN)) */
00401 
00402 /*  INFO    (output) INTEGER */
00403 /*          If 0, then everything ran OK. */
00404 /*           -1: NSIZES < 0 */
00405 /*           -2: Some NN(j) < 0 */
00406 /*           -3: NTYPES < 0 */
00407 /*           -6: THRESH < 0 */
00408 /*           -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). */
00409 /*          -16: LDVL < 1 or LDVL < NMAX, where NMAX is max( NN(j) ). */
00410 /*          -18: LDVR < 1 or LDVR < NMAX, where NMAX is max( NN(j) ). */
00411 /*          -20: LDLRE < 1 or LDLRE < NMAX, where NMAX is max( NN(j) ). */
00412 /*          -23: NWORK too small. */
00413 /*          If  SLATMR, SLATMS, SLATME or SGEEV returns an error code, */
00414 /*              the absolute value of it is returned. */
00415 
00416 /* ----------------------------------------------------------------------- */
00417 
00418 /*     Some Local Variables and Parameters: */
00419 /*     ---- ----- --------- --- ---------- */
00420 
00421 /*     ZERO, ONE       Real 0 and 1. */
00422 /*     MAXTYP          The number of types defined. */
00423 /*     NMAX            Largest value in NN. */
00424 /*     NERRS           The number of tests which have exceeded THRESH */
00425 /*     COND, CONDS, */
00426 /*     IMODE           Values to be passed to the matrix generators. */
00427 /*     ANORM           Norm of A; passed to matrix generators. */
00428 
00429 /*     OVFL, UNFL      Overflow and underflow thresholds. */
00430 /*     ULP, ULPINV     Finest relative precision and its inverse. */
00431 /*     RTULP, RTULPI   Square roots of the previous 4 values. */
00432 
00433 /*             The following four arrays decode JTYPE: */
00434 /*     KTYPE(j)        The general type (1-10) for type "j". */
00435 /*     KMODE(j)        The MODE value to be passed to the matrix */
00436 /*                     generator for type "j". */
00437 /*     KMAGN(j)        The order of magnitude ( O(1), */
00438 /*                     O(overflow^(1/2) ), O(underflow^(1/2) ) */
00439 /*     KCONDS(j)       Selectw whether CONDS is to be 1 or */
00440 /*                     1/sqrt(ulp).  (0 means irrelevant.) */
00441 
00442 /*  ===================================================================== */
00443 
00444 /*     .. Parameters .. */
00445 /*     .. */
00446 /*     .. Local Scalars .. */
00447 /*     .. */
00448 /*     .. Local Arrays .. */
00449 /*     .. */
00450 /*     .. External Functions .. */
00451 /*     .. */
00452 /*     .. External Subroutines .. */
00453 /*     .. */
00454 /*     .. Intrinsic Functions .. */
00455 /*     .. */
00456 /*     .. Data statements .. */
00457     /* Parameter adjustments */
00458     --nn;
00459     --dotype;
00460     --iseed;
00461     h_dim1 = *lda;
00462     h_offset = 1 + h_dim1;
00463     h__ -= h_offset;
00464     a_dim1 = *lda;
00465     a_offset = 1 + a_dim1;
00466     a -= a_offset;
00467     --wr;
00468     --wi;
00469     --wr1;
00470     --wi1;
00471     vl_dim1 = *ldvl;
00472     vl_offset = 1 + vl_dim1;
00473     vl -= vl_offset;
00474     vr_dim1 = *ldvr;
00475     vr_offset = 1 + vr_dim1;
00476     vr -= vr_offset;
00477     lre_dim1 = *ldlre;
00478     lre_offset = 1 + lre_dim1;
00479     lre -= lre_offset;
00480     --result;
00481     --work;
00482     --iwork;
00483 
00484     /* Function Body */
00485 /*     .. */
00486 /*     .. Executable Statements .. */
00487 
00488     s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
00489     s_copy(path + 1, "EV", (ftnlen)2, (ftnlen)2);
00490 
00491 /*     Check for errors */
00492 
00493     ntestt = 0;
00494     ntestf = 0;
00495     *info = 0;
00496 
00497 /*     Important constants */
00498 
00499     badnn = FALSE_;
00500     nmax = 0;
00501     i__1 = *nsizes;
00502     for (j = 1; j <= i__1; ++j) {
00503 /* Computing MAX */
00504         i__2 = nmax, i__3 = nn[j];
00505         nmax = max(i__2,i__3);
00506         if (nn[j] < 0) {
00507             badnn = TRUE_;
00508         }
00509 /* L10: */
00510     }
00511 
00512 /*     Check for errors */
00513 
00514     if (*nsizes < 0) {
00515         *info = -1;
00516     } else if (badnn) {
00517         *info = -2;
00518     } else if (*ntypes < 0) {
00519         *info = -3;
00520     } else if (*thresh < 0.f) {
00521         *info = -6;
00522     } else if (*nounit <= 0) {
00523         *info = -7;
00524     } else if (*lda < 1 || *lda < nmax) {
00525         *info = -9;
00526     } else if (*ldvl < 1 || *ldvl < nmax) {
00527         *info = -16;
00528     } else if (*ldvr < 1 || *ldvr < nmax) {
00529         *info = -18;
00530     } else if (*ldlre < 1 || *ldlre < nmax) {
00531         *info = -20;
00532     } else /* if(complicated condition) */ {
00533 /* Computing 2nd power */
00534         i__1 = nmax;
00535         if (nmax * 5 + (i__1 * i__1 << 1) > *nwork) {
00536             *info = -23;
00537         }
00538     }
00539 
00540     if (*info != 0) {
00541         i__1 = -(*info);
00542         xerbla_("SDRVEV", &i__1);
00543         return 0;
00544     }
00545 
00546 /*     Quick return if nothing to do */
00547 
00548     if (*nsizes == 0 || *ntypes == 0) {
00549         return 0;
00550     }
00551 
00552 /*     More Important constants */
00553 
00554     unfl = slamch_("Safe minimum");
00555     ovfl = 1.f / unfl;
00556     slabad_(&unfl, &ovfl);
00557     ulp = slamch_("Precision");
00558     ulpinv = 1.f / ulp;
00559     rtulp = sqrt(ulp);
00560     rtulpi = 1.f / rtulp;
00561 
00562 /*     Loop over sizes, types */
00563 
00564     nerrs = 0;
00565 
00566     i__1 = *nsizes;
00567     for (jsize = 1; jsize <= i__1; ++jsize) {
00568         n = nn[jsize];
00569         if (*nsizes != 1) {
00570             mtypes = min(21,*ntypes);
00571         } else {
00572             mtypes = min(22,*ntypes);
00573         }
00574 
00575         i__2 = mtypes;
00576         for (jtype = 1; jtype <= i__2; ++jtype) {
00577             if (! dotype[jtype]) {
00578                 goto L260;
00579             }
00580 
00581 /*           Save ISEED in case of an error. */
00582 
00583             for (j = 1; j <= 4; ++j) {
00584                 ioldsd[j - 1] = iseed[j];
00585 /* L20: */
00586             }
00587 
00588 /*           Compute "A" */
00589 
00590 /*           Control parameters: */
00591 
00592 /*           KMAGN  KCONDS  KMODE        KTYPE */
00593 /*       =1  O(1)   1       clustered 1  zero */
00594 /*       =2  large  large   clustered 2  identity */
00595 /*       =3  small          exponential  Jordan */
00596 /*       =4                 arithmetic   diagonal, (w/ eigenvalues) */
00597 /*       =5                 random log   symmetric, w/ eigenvalues */
00598 /*       =6                 random       general, w/ eigenvalues */
00599 /*       =7                              random diagonal */
00600 /*       =8                              random symmetric */
00601 /*       =9                              random general */
00602 /*       =10                             random triangular */
00603 
00604             if (mtypes > 21) {
00605                 goto L90;
00606             }
00607 
00608             itype = ktype[jtype - 1];
00609             imode = kmode[jtype - 1];
00610 
00611 /*           Compute norm */
00612 
00613             switch (kmagn[jtype - 1]) {
00614                 case 1:  goto L30;
00615                 case 2:  goto L40;
00616                 case 3:  goto L50;
00617             }
00618 
00619 L30:
00620             anorm = 1.f;
00621             goto L60;
00622 
00623 L40:
00624             anorm = ovfl * ulp;
00625             goto L60;
00626 
00627 L50:
00628             anorm = unfl * ulpinv;
00629             goto L60;
00630 
00631 L60:
00632 
00633             slaset_("Full", lda, &n, &c_b17, &c_b17, &a[a_offset], lda);
00634             iinfo = 0;
00635             cond = ulpinv;
00636 
00637 /*           Special Matrices -- Identity & Jordan block */
00638 
00639 /*              Zero */
00640 
00641             if (itype == 1) {
00642                 iinfo = 0;
00643 
00644             } else if (itype == 2) {
00645 
00646 /*              Identity */
00647 
00648                 i__3 = n;
00649                 for (jcol = 1; jcol <= i__3; ++jcol) {
00650                     a[jcol + jcol * a_dim1] = anorm;
00651 /* L70: */
00652                 }
00653 
00654             } else if (itype == 3) {
00655 
00656 /*              Jordan Block */
00657 
00658                 i__3 = n;
00659                 for (jcol = 1; jcol <= i__3; ++jcol) {
00660                     a[jcol + jcol * a_dim1] = anorm;
00661                     if (jcol > 1) {
00662                         a[jcol + (jcol - 1) * a_dim1] = 1.f;
00663                     }
00664 /* L80: */
00665                 }
00666 
00667             } else if (itype == 4) {
00668 
00669 /*              Diagonal Matrix, [Eigen]values Specified */
00670 
00671                 slatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &cond, 
00672                         &anorm, &c__0, &c__0, "N", &a[a_offset], lda, &work[n 
00673                         + 1], &iinfo);
00674 
00675             } else if (itype == 5) {
00676 
00677 /*              Symmetric, eigenvalues specified */
00678 
00679                 slatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &cond, 
00680                         &anorm, &n, &n, "N", &a[a_offset], lda, &work[n + 1], 
00681                         &iinfo);
00682 
00683             } else if (itype == 6) {
00684 
00685 /*              General, eigenvalues specified */
00686 
00687                 if (kconds[jtype - 1] == 1) {
00688                     conds = 1.f;
00689                 } else if (kconds[jtype - 1] == 2) {
00690                     conds = rtulpi;
00691                 } else {
00692                     conds = 0.f;
00693                 }
00694 
00695                 *(unsigned char *)&adumma[0] = ' ';
00696                 slatme_(&n, "S", &iseed[1], &work[1], &imode, &cond, &c_b31, 
00697                         adumma, "T", "T", "T", &work[n + 1], &c__4, &conds, &
00698                         n, &n, &anorm, &a[a_offset], lda, &work[(n << 1) + 1], 
00699                          &iinfo);
00700 
00701             } else if (itype == 7) {
00702 
00703 /*              Diagonal, random eigenvalues */
00704 
00705                 slatmr_(&n, &n, "S", &iseed[1], "S", &work[1], &c__6, &c_b31, 
00706                         &c_b31, "T", "N", &work[n + 1], &c__1, &c_b31, &work[(
00707                         n << 1) + 1], &c__1, &c_b31, "N", idumma, &c__0, &
00708                         c__0, &c_b17, &anorm, "NO", &a[a_offset], lda, &iwork[
00709                         1], &iinfo);
00710 
00711             } else if (itype == 8) {
00712 
00713 /*              Symmetric, random eigenvalues */
00714 
00715                 slatmr_(&n, &n, "S", &iseed[1], "S", &work[1], &c__6, &c_b31, 
00716                         &c_b31, "T", "N", &work[n + 1], &c__1, &c_b31, &work[(
00717                         n << 1) + 1], &c__1, &c_b31, "N", idumma, &n, &n, &
00718                         c_b17, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
00719                         iinfo);
00720 
00721             } else if (itype == 9) {
00722 
00723 /*              General, random eigenvalues */
00724 
00725                 slatmr_(&n, &n, "S", &iseed[1], "N", &work[1], &c__6, &c_b31, 
00726                         &c_b31, "T", "N", &work[n + 1], &c__1, &c_b31, &work[(
00727                         n << 1) + 1], &c__1, &c_b31, "N", idumma, &n, &n, &
00728                         c_b17, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
00729                         iinfo);
00730                 if (n >= 4) {
00731                     slaset_("Full", &c__2, &n, &c_b17, &c_b17, &a[a_offset], 
00732                             lda);
00733                     i__3 = n - 3;
00734                     slaset_("Full", &i__3, &c__1, &c_b17, &c_b17, &a[a_dim1 + 
00735                             3], lda);
00736                     i__3 = n - 3;
00737                     slaset_("Full", &i__3, &c__2, &c_b17, &c_b17, &a[(n - 1) *
00738                              a_dim1 + 3], lda);
00739                     slaset_("Full", &c__1, &n, &c_b17, &c_b17, &a[n + a_dim1], 
00740                              lda);
00741                 }
00742 
00743             } else if (itype == 10) {
00744 
00745 /*              Triangular, random eigenvalues */
00746 
00747                 slatmr_(&n, &n, "S", &iseed[1], "N", &work[1], &c__6, &c_b31, 
00748                         &c_b31, "T", "N", &work[n + 1], &c__1, &c_b31, &work[(
00749                         n << 1) + 1], &c__1, &c_b31, "N", idumma, &n, &c__0, &
00750                         c_b17, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
00751                         iinfo);
00752 
00753             } else {
00754 
00755                 iinfo = 1;
00756             }
00757 
00758             if (iinfo != 0) {
00759                 io___32.ciunit = *nounit;
00760                 s_wsfe(&io___32);
00761                 do_fio(&c__1, "Generator", (ftnlen)9);
00762                 do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
00763                 do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
00764                 do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
00765                 do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
00766                 e_wsfe();
00767                 *info = abs(iinfo);
00768                 return 0;
00769             }
00770 
00771 L90:
00772 
00773 /*           Test for minimal and generous workspace */
00774 
00775             for (iwk = 1; iwk <= 2; ++iwk) {
00776                 if (iwk == 1) {
00777                     nnwork = n << 2;
00778                 } else {
00779 /* Computing 2nd power */
00780                     i__3 = n;
00781                     nnwork = n * 5 + (i__3 * i__3 << 1);
00782                 }
00783                 nnwork = max(nnwork,1);
00784 
00785 /*              Initialize RESULT */
00786 
00787                 for (j = 1; j <= 7; ++j) {
00788                     result[j] = -1.f;
00789 /* L100: */
00790                 }
00791 
00792 /*              Compute eigenvalues and eigenvectors, and test them */
00793 
00794                 slacpy_("F", &n, &n, &a[a_offset], lda, &h__[h_offset], lda);
00795                 sgeev_("V", "V", &n, &h__[h_offset], lda, &wr[1], &wi[1], &vl[
00796                         vl_offset], ldvl, &vr[vr_offset], ldvr, &work[1], &
00797                         nnwork, &iinfo);
00798                 if (iinfo != 0) {
00799                     result[1] = ulpinv;
00800                     io___35.ciunit = *nounit;
00801                     s_wsfe(&io___35);
00802                     do_fio(&c__1, "SGEEV1", (ftnlen)6);
00803                     do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
00804                     do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
00805                     do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
00806                     do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
00807                             ;
00808                     e_wsfe();
00809                     *info = abs(iinfo);
00810                     goto L220;
00811                 }
00812 
00813 /*              Do Test (1) */
00814 
00815                 sget22_("N", "N", "N", &n, &a[a_offset], lda, &vr[vr_offset], 
00816                         ldvr, &wr[1], &wi[1], &work[1], res);
00817                 result[1] = res[0];
00818 
00819 /*              Do Test (2) */
00820 
00821                 sget22_("T", "N", "T", &n, &a[a_offset], lda, &vl[vl_offset], 
00822                         ldvl, &wr[1], &wi[1], &work[1], res);
00823                 result[2] = res[0];
00824 
00825 /*              Do Test (3) */
00826 
00827                 i__3 = n;
00828                 for (j = 1; j <= i__3; ++j) {
00829                     tnrm = 1.f;
00830                     if (wi[j] == 0.f) {
00831                         tnrm = snrm2_(&n, &vr[j * vr_dim1 + 1], &c__1);
00832                     } else if (wi[j] > 0.f) {
00833                         r__1 = snrm2_(&n, &vr[j * vr_dim1 + 1], &c__1);
00834                         r__2 = snrm2_(&n, &vr[(j + 1) * vr_dim1 + 1], &c__1);
00835                         tnrm = slapy2_(&r__1, &r__2);
00836                     }
00837 /* Computing MAX */
00838 /* Computing MIN */
00839                     r__4 = ulpinv, r__5 = (r__1 = tnrm - 1.f, dabs(r__1)) / 
00840                             ulp;
00841                     r__2 = result[3], r__3 = dmin(r__4,r__5);
00842                     result[3] = dmax(r__2,r__3);
00843                     if (wi[j] > 0.f) {
00844                         vmx = 0.f;
00845                         vrmx = 0.f;
00846                         i__4 = n;
00847                         for (jj = 1; jj <= i__4; ++jj) {
00848                             vtst = slapy2_(&vr[jj + j * vr_dim1], &vr[jj + (j 
00849                                     + 1) * vr_dim1]);
00850                             if (vtst > vmx) {
00851                                 vmx = vtst;
00852                             }
00853                             if (vr[jj + (j + 1) * vr_dim1] == 0.f && (r__1 = 
00854                                     vr[jj + j * vr_dim1], dabs(r__1)) > vrmx) 
00855                                     {
00856                                 vrmx = (r__2 = vr[jj + j * vr_dim1], dabs(
00857                                         r__2));
00858                             }
00859 /* L110: */
00860                         }
00861                         if (vrmx / vmx < 1.f - ulp * 2.f) {
00862                             result[3] = ulpinv;
00863                         }
00864                     }
00865 /* L120: */
00866                 }
00867 
00868 /*              Do Test (4) */
00869 
00870                 i__3 = n;
00871                 for (j = 1; j <= i__3; ++j) {
00872                     tnrm = 1.f;
00873                     if (wi[j] == 0.f) {
00874                         tnrm = snrm2_(&n, &vl[j * vl_dim1 + 1], &c__1);
00875                     } else if (wi[j] > 0.f) {
00876                         r__1 = snrm2_(&n, &vl[j * vl_dim1 + 1], &c__1);
00877                         r__2 = snrm2_(&n, &vl[(j + 1) * vl_dim1 + 1], &c__1);
00878                         tnrm = slapy2_(&r__1, &r__2);
00879                     }
00880 /* Computing MAX */
00881 /* Computing MIN */
00882                     r__4 = ulpinv, r__5 = (r__1 = tnrm - 1.f, dabs(r__1)) / 
00883                             ulp;
00884                     r__2 = result[4], r__3 = dmin(r__4,r__5);
00885                     result[4] = dmax(r__2,r__3);
00886                     if (wi[j] > 0.f) {
00887                         vmx = 0.f;
00888                         vrmx = 0.f;
00889                         i__4 = n;
00890                         for (jj = 1; jj <= i__4; ++jj) {
00891                             vtst = slapy2_(&vl[jj + j * vl_dim1], &vl[jj + (j 
00892                                     + 1) * vl_dim1]);
00893                             if (vtst > vmx) {
00894                                 vmx = vtst;
00895                             }
00896                             if (vl[jj + (j + 1) * vl_dim1] == 0.f && (r__1 = 
00897                                     vl[jj + j * vl_dim1], dabs(r__1)) > vrmx) 
00898                                     {
00899                                 vrmx = (r__2 = vl[jj + j * vl_dim1], dabs(
00900                                         r__2));
00901                             }
00902 /* L130: */
00903                         }
00904                         if (vrmx / vmx < 1.f - ulp * 2.f) {
00905                             result[4] = ulpinv;
00906                         }
00907                     }
00908 /* L140: */
00909                 }
00910 
00911 /*              Compute eigenvalues only, and test them */
00912 
00913                 slacpy_("F", &n, &n, &a[a_offset], lda, &h__[h_offset], lda);
00914                 sgeev_("N", "N", &n, &h__[h_offset], lda, &wr1[1], &wi1[1], 
00915                         dum, &c__1, dum, &c__1, &work[1], &nnwork, &iinfo);
00916                 if (iinfo != 0) {
00917                     result[1] = ulpinv;
00918                     io___43.ciunit = *nounit;
00919                     s_wsfe(&io___43);
00920                     do_fio(&c__1, "SGEEV2", (ftnlen)6);
00921                     do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
00922                     do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
00923                     do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
00924                     do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
00925                             ;
00926                     e_wsfe();
00927                     *info = abs(iinfo);
00928                     goto L220;
00929                 }
00930 
00931 /*              Do Test (5) */
00932 
00933                 i__3 = n;
00934                 for (j = 1; j <= i__3; ++j) {
00935                     if (wr[j] != wr1[j] || wi[j] != wi1[j]) {
00936                         result[5] = ulpinv;
00937                     }
00938 /* L150: */
00939                 }
00940 
00941 /*              Compute eigenvalues and right eigenvectors, and test them */
00942 
00943                 slacpy_("F", &n, &n, &a[a_offset], lda, &h__[h_offset], lda);
00944                 sgeev_("N", "V", &n, &h__[h_offset], lda, &wr1[1], &wi1[1], 
00945                         dum, &c__1, &lre[lre_offset], ldlre, &work[1], &
00946                         nnwork, &iinfo);
00947                 if (iinfo != 0) {
00948                     result[1] = ulpinv;
00949                     io___44.ciunit = *nounit;
00950                     s_wsfe(&io___44);
00951                     do_fio(&c__1, "SGEEV3", (ftnlen)6);
00952                     do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
00953                     do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
00954                     do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
00955                     do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
00956                             ;
00957                     e_wsfe();
00958                     *info = abs(iinfo);
00959                     goto L220;
00960                 }
00961 
00962 /*              Do Test (5) again */
00963 
00964                 i__3 = n;
00965                 for (j = 1; j <= i__3; ++j) {
00966                     if (wr[j] != wr1[j] || wi[j] != wi1[j]) {
00967                         result[5] = ulpinv;
00968                     }
00969 /* L160: */
00970                 }
00971 
00972 /*              Do Test (6) */
00973 
00974                 i__3 = n;
00975                 for (j = 1; j <= i__3; ++j) {
00976                     i__4 = n;
00977                     for (jj = 1; jj <= i__4; ++jj) {
00978                         if (vr[j + jj * vr_dim1] != lre[j + jj * lre_dim1]) {
00979                             result[6] = ulpinv;
00980                         }
00981 /* L170: */
00982                     }
00983 /* L180: */
00984                 }
00985 
00986 /*              Compute eigenvalues and left eigenvectors, and test them */
00987 
00988                 slacpy_("F", &n, &n, &a[a_offset], lda, &h__[h_offset], lda);
00989                 sgeev_("V", "N", &n, &h__[h_offset], lda, &wr1[1], &wi1[1], &
00990                         lre[lre_offset], ldlre, dum, &c__1, &work[1], &nnwork, 
00991                          &iinfo);
00992                 if (iinfo != 0) {
00993                     result[1] = ulpinv;
00994                     io___45.ciunit = *nounit;
00995                     s_wsfe(&io___45);
00996                     do_fio(&c__1, "SGEEV4", (ftnlen)6);
00997                     do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
00998                     do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
00999                     do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
01000                     do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
01001                             ;
01002                     e_wsfe();
01003                     *info = abs(iinfo);
01004                     goto L220;
01005                 }
01006 
01007 /*              Do Test (5) again */
01008 
01009                 i__3 = n;
01010                 for (j = 1; j <= i__3; ++j) {
01011                     if (wr[j] != wr1[j] || wi[j] != wi1[j]) {
01012                         result[5] = ulpinv;
01013                     }
01014 /* L190: */
01015                 }
01016 
01017 /*              Do Test (7) */
01018 
01019                 i__3 = n;
01020                 for (j = 1; j <= i__3; ++j) {
01021                     i__4 = n;
01022                     for (jj = 1; jj <= i__4; ++jj) {
01023                         if (vl[j + jj * vl_dim1] != lre[j + jj * lre_dim1]) {
01024                             result[7] = ulpinv;
01025                         }
01026 /* L200: */
01027                     }
01028 /* L210: */
01029                 }
01030 
01031 /*              End of Loop -- Check for RESULT(j) > THRESH */
01032 
01033 L220:
01034 
01035                 ntest = 0;
01036                 nfail = 0;
01037                 for (j = 1; j <= 7; ++j) {
01038                     if (result[j] >= 0.f) {
01039                         ++ntest;
01040                     }
01041                     if (result[j] >= *thresh) {
01042                         ++nfail;
01043                     }
01044 /* L230: */
01045                 }
01046 
01047                 if (nfail > 0) {
01048                     ++ntestf;
01049                 }
01050                 if (ntestf == 1) {
01051                     io___48.ciunit = *nounit;
01052                     s_wsfe(&io___48);
01053                     do_fio(&c__1, path, (ftnlen)3);
01054                     e_wsfe();
01055                     io___49.ciunit = *nounit;
01056                     s_wsfe(&io___49);
01057                     e_wsfe();
01058                     io___50.ciunit = *nounit;
01059                     s_wsfe(&io___50);
01060                     e_wsfe();
01061                     io___51.ciunit = *nounit;
01062                     s_wsfe(&io___51);
01063                     e_wsfe();
01064                     io___52.ciunit = *nounit;
01065                     s_wsfe(&io___52);
01066                     do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(real));
01067                     e_wsfe();
01068                     ntestf = 2;
01069                 }
01070 
01071                 for (j = 1; j <= 7; ++j) {
01072                     if (result[j] >= *thresh) {
01073                         io___53.ciunit = *nounit;
01074                         s_wsfe(&io___53);
01075                         do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
01076                         do_fio(&c__1, (char *)&iwk, (ftnlen)sizeof(integer));
01077                         do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
01078                                 integer));
01079                         do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer))
01080                                 ;
01081                         do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer));
01082                         do_fio(&c__1, (char *)&result[j], (ftnlen)sizeof(real)
01083                                 );
01084                         e_wsfe();
01085                     }
01086 /* L240: */
01087                 }
01088 
01089                 nerrs += nfail;
01090                 ntestt += ntest;
01091 
01092 /* L250: */
01093             }
01094 L260:
01095             ;
01096         }
01097 /* L270: */
01098     }
01099 
01100 /*     Summary */
01101 
01102     slasum_(path, nounit, &nerrs, &ntestt);
01103 
01104 
01105 
01106     return 0;
01107 
01108 /*     End of SDRVEV */
01109 
01110 } /* sdrvev_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:00