dtpt06.c
Go to the documentation of this file.
00001 /* dtpt06.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Subroutine */ int dtpt06_(doublereal *rcond, doublereal *rcondc, char *
00017         uplo, char *diag, integer *n, doublereal *ap, doublereal *work, 
00018         doublereal *rat)
00019 {
00020     /* System generated locals */
00021     doublereal d__1, d__2;
00022 
00023     /* Local variables */
00024     doublereal eps, rmin, rmax, anorm;
00025     extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);
00026     extern doublereal dlamch_(char *);
00027     doublereal bignum;
00028     extern doublereal dlantp_(char *, char *, char *, integer *, doublereal *, 
00029              doublereal *);
00030     doublereal smlnum;
00031 
00032 
00033 /*  -- LAPACK test routine (version 3.1) -- */
00034 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00035 /*     November 2006 */
00036 
00037 /*     .. Scalar Arguments .. */
00038 /*     .. */
00039 /*     .. Array Arguments .. */
00040 /*     .. */
00041 
00042 /*  Purpose */
00043 /*  ======= */
00044 
00045 /*  DTPT06 computes a test ratio comparing RCOND (the reciprocal */
00046 /*  condition number of a triangular matrix A) and RCONDC, the estimate */
00047 /*  computed by DTPCON.  Information about the triangular matrix A is */
00048 /*  used if one estimate is zero and the other is non-zero to decide if */
00049 /*  underflow in the estimate is justified. */
00050 
00051 /*  Arguments */
00052 /*  ========= */
00053 
00054 /*  RCOND   (input) DOUBLE PRECISION */
00055 /*          The estimate of the reciprocal condition number obtained by */
00056 /*          forming the explicit inverse of the matrix A and computing */
00057 /*          RCOND = 1/( norm(A) * norm(inv(A)) ). */
00058 
00059 /*  RCONDC  (input) DOUBLE PRECISION */
00060 /*          The estimate of the reciprocal condition number computed by */
00061 /*          DTPCON. */
00062 
00063 /*  UPLO    (input) CHARACTER */
00064 /*          Specifies whether the matrix A is upper or lower triangular. */
00065 /*          = 'U':  Upper triangular */
00066 /*          = 'L':  Lower triangular */
00067 
00068 /*  DIAG    (input) CHARACTER */
00069 /*          Specifies whether or not the matrix A is unit triangular. */
00070 /*          = 'N':  Non-unit triangular */
00071 /*          = 'U':  Unit triangular */
00072 
00073 /*  N       (input) INTEGER */
00074 /*          The order of the matrix A.  N >= 0. */
00075 
00076 /*  AP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
00077 /*          The upper or lower triangular matrix A, packed columnwise in */
00078 /*          a linear array.  The j-th column of A is stored in the array */
00079 /*          AP as follows: */
00080 /*          if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j; */
00081 /*          if UPLO = 'L', */
00082 /*             AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n. */
00083 
00084 /*  WORK    (workspace) DOUBLE PRECISION array, dimension (N) */
00085 
00086 /*  RAT     (output) DOUBLE PRECISION */
00087 /*          The test ratio.  If both RCOND and RCONDC are nonzero, */
00088 /*             RAT = MAX( RCOND, RCONDC )/MIN( RCOND, RCONDC ) - 1. */
00089 /*          If RAT = 0, the two estimates are exactly the same. */
00090 
00091 /*  ===================================================================== */
00092 
00093 /*     .. Parameters .. */
00094 /*     .. */
00095 /*     .. Local Scalars .. */
00096 /*     .. */
00097 /*     .. External Functions .. */
00098 /*     .. */
00099 /*     .. Intrinsic Functions .. */
00100 /*     .. */
00101 /*     .. External Subroutines .. */
00102 /*     .. */
00103 /*     .. Executable Statements .. */
00104 
00105     /* Parameter adjustments */
00106     --work;
00107     --ap;
00108 
00109     /* Function Body */
00110     eps = dlamch_("Epsilon");
00111     rmax = max(*rcond,*rcondc);
00112     rmin = min(*rcond,*rcondc);
00113 
00114 /*     Do the easy cases first. */
00115 
00116     if (rmin < 0.) {
00117 
00118 /*        Invalid value for RCOND or RCONDC, return 1/EPS. */
00119 
00120         *rat = 1. / eps;
00121 
00122     } else if (rmin > 0.) {
00123 
00124 /*        Both estimates are positive, return RMAX/RMIN - 1. */
00125 
00126         *rat = rmax / rmin - 1.;
00127 
00128     } else if (rmax == 0.) {
00129 
00130 /*        Both estimates zero. */
00131 
00132         *rat = 0.;
00133 
00134     } else {
00135 
00136 /*        One estimate is zero, the other is non-zero.  If the matrix is */
00137 /*        ill-conditioned, return the nonzero estimate multiplied by */
00138 /*        1/EPS; if the matrix is badly scaled, return the nonzero */
00139 /*        estimate multiplied by BIGNUM/TMAX, where TMAX is the maximum */
00140 /*        element in absolute value in A. */
00141 
00142         smlnum = dlamch_("Safe minimum");
00143         bignum = 1. / smlnum;
00144         dlabad_(&smlnum, &bignum);
00145         anorm = dlantp_("M", uplo, diag, n, &ap[1], &work[1]);
00146 
00147 /* Computing MIN */
00148         d__1 = bignum / max(1.,anorm), d__2 = 1. / eps;
00149         *rat = rmax * min(d__1,d__2);
00150     }
00151 
00152     return 0;
00153 
00154 /*     End of DTPT06 */
00155 
00156 } /* dtpt06_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:49