dtbt02.c
Go to the documentation of this file.
00001 /* dtbt02.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 static doublereal c_b10 = -1.;
00020 
00021 /* Subroutine */ int dtbt02_(char *uplo, char *trans, char *diag, integer *n, 
00022         integer *kd, integer *nrhs, doublereal *ab, integer *ldab, doublereal 
00023         *x, integer *ldx, doublereal *b, integer *ldb, doublereal *work, 
00024         doublereal *resid)
00025 {
00026     /* System generated locals */
00027     integer ab_dim1, ab_offset, b_dim1, b_offset, x_dim1, x_offset, i__1;
00028     doublereal d__1, d__2;
00029 
00030     /* Local variables */
00031     integer j;
00032     doublereal eps;
00033     extern logical lsame_(char *, char *);
00034     extern doublereal dasum_(integer *, doublereal *, integer *);
00035     doublereal anorm, bnorm;
00036     extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
00037             doublereal *, integer *), dtbmv_(char *, char *, char *, integer *
00038 , integer *, doublereal *, integer *, doublereal *, integer *), daxpy_(integer *, doublereal *, 
00039             doublereal *, integer *, doublereal *, integer *);
00040     doublereal xnorm;
00041     extern doublereal dlamch_(char *), dlantb_(char *, char *, char *, 
00042              integer *, integer *, doublereal *, integer *, doublereal *);
00043 
00044 
00045 /*  -- LAPACK test routine (version 3.1) -- */
00046 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00047 /*     November 2006 */
00048 
00049 /*     .. Scalar Arguments .. */
00050 /*     .. */
00051 /*     .. Array Arguments .. */
00052 /*     .. */
00053 
00054 /*  Purpose */
00055 /*  ======= */
00056 
00057 /*  DTBT02 computes the residual for the computed solution to a */
00058 /*  triangular system of linear equations  A*x = b  or  A' *x = b when */
00059 /*  A is a triangular band matrix.  Here A' is the transpose of A and */
00060 /*  x and b are N by NRHS matrices.  The test ratio is the maximum over */
00061 /*  the number of right hand sides of */
00062 /*     norm(b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ), */
00063 /*  where op(A) denotes A or A' and EPS is the machine epsilon. */
00064 
00065 /*  Arguments */
00066 /*  ========= */
00067 
00068 /*  UPLO    (input) CHARACTER*1 */
00069 /*          Specifies whether the matrix A is upper or lower triangular. */
00070 /*          = 'U':  Upper triangular */
00071 /*          = 'L':  Lower triangular */
00072 
00073 /*  TRANS   (input) CHARACTER*1 */
00074 /*          Specifies the operation applied to A. */
00075 /*          = 'N':  A *x = b  (No transpose) */
00076 /*          = 'T':  A'*x = b  (Transpose) */
00077 /*          = 'C':  A'*x = b  (Conjugate transpose = Transpose) */
00078 
00079 /*  DIAG    (input) CHARACTER*1 */
00080 /*          Specifies whether or not the matrix A is unit triangular. */
00081 /*          = 'N':  Non-unit triangular */
00082 /*          = 'U':  Unit triangular */
00083 
00084 /*  N       (input) INTEGER */
00085 /*          The order of the matrix A.  N >= 0. */
00086 
00087 /*  KD      (input) INTEGER */
00088 /*          The number of superdiagonals or subdiagonals of the */
00089 /*          triangular band matrix A.  KD >= 0. */
00090 
00091 /*  NRHS    (input) INTEGER */
00092 /*          The number of right hand sides, i.e., the number of columns */
00093 /*          of the matrices X and B.  NRHS >= 0. */
00094 
00095 /*  AB      (input) DOUBLE PRECISION array, dimension (LDAB,N) */
00096 /*          The upper or lower triangular band matrix A, stored in the */
00097 /*          first kd+1 rows of the array. The j-th column of A is stored */
00098 /*          in the j-th column of the array AB as follows: */
00099 /*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
00100 /*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd). */
00101 
00102 /*  LDAB    (input) INTEGER */
00103 /*          The leading dimension of the array AB.  LDAB >= KD+1. */
00104 
00105 /*  X       (input) DOUBLE PRECISION array, dimension (LDX,NRHS) */
00106 /*          The computed solution vectors for the system of linear */
00107 /*          equations. */
00108 
00109 /*  LDX     (input) INTEGER */
00110 /*          The leading dimension of the array X.  LDX >= max(1,N). */
00111 
00112 /*  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */
00113 /*          The right hand side vectors for the system of linear */
00114 /*          equations. */
00115 
00116 /*  LDB     (input) INTEGER */
00117 /*          The leading dimension of the array B.  LDB >= max(1,N). */
00118 
00119 /*  WORK    (workspace) DOUBLE PRECISION array, dimension (N) */
00120 
00121 /*  RESID   (output) DOUBLE PRECISION */
00122 /*          The maximum over the number of right hand sides of */
00123 /*          norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ). */
00124 
00125 /*  ===================================================================== */
00126 
00127 /*     .. Parameters .. */
00128 /*     .. */
00129 /*     .. Local Scalars .. */
00130 /*     .. */
00131 /*     .. External Functions .. */
00132 /*     .. */
00133 /*     .. External Subroutines .. */
00134 /*     .. */
00135 /*     .. Intrinsic Functions .. */
00136 /*     .. */
00137 /*     .. Executable Statements .. */
00138 
00139 /*     Quick exit if N = 0 or NRHS = 0 */
00140 
00141     /* Parameter adjustments */
00142     ab_dim1 = *ldab;
00143     ab_offset = 1 + ab_dim1;
00144     ab -= ab_offset;
00145     x_dim1 = *ldx;
00146     x_offset = 1 + x_dim1;
00147     x -= x_offset;
00148     b_dim1 = *ldb;
00149     b_offset = 1 + b_dim1;
00150     b -= b_offset;
00151     --work;
00152 
00153     /* Function Body */
00154     if (*n <= 0 || *nrhs <= 0) {
00155         *resid = 0.;
00156         return 0;
00157     }
00158 
00159 /*     Compute the 1-norm of A or A'. */
00160 
00161     if (lsame_(trans, "N")) {
00162         anorm = dlantb_("1", uplo, diag, n, kd, &ab[ab_offset], ldab, &work[1]
00163 );
00164     } else {
00165         anorm = dlantb_("I", uplo, diag, n, kd, &ab[ab_offset], ldab, &work[1]
00166 );
00167     }
00168 
00169 /*     Exit with RESID = 1/EPS if ANORM = 0. */
00170 
00171     eps = dlamch_("Epsilon");
00172     if (anorm <= 0.) {
00173         *resid = 1. / eps;
00174         return 0;
00175     }
00176 
00177 /*     Compute the maximum over the number of right hand sides of */
00178 /*        norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ). */
00179 
00180     *resid = 0.;
00181     i__1 = *nrhs;
00182     for (j = 1; j <= i__1; ++j) {
00183         dcopy_(n, &x[j * x_dim1 + 1], &c__1, &work[1], &c__1);
00184         dtbmv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &work[1], &
00185                 c__1);
00186         daxpy_(n, &c_b10, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1);
00187         bnorm = dasum_(n, &work[1], &c__1);
00188         xnorm = dasum_(n, &x[j * x_dim1 + 1], &c__1);
00189         if (xnorm <= 0.) {
00190             *resid = 1. / eps;
00191         } else {
00192 /* Computing MAX */
00193             d__1 = *resid, d__2 = bnorm / anorm / xnorm / eps;
00194             *resid = max(d__1,d__2);
00195         }
00196 /* L10: */
00197     }
00198 
00199     return 0;
00200 
00201 /*     End of DTBT02 */
00202 
00203 } /* dtbt02_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:49