00001 /* dsysvxx.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int dsysvxx_(char *fact, char *uplo, integer *n, integer * 00017 nrhs, doublereal *a, integer *lda, doublereal *af, integer *ldaf, 00018 integer *ipiv, char *equed, doublereal *s, doublereal *b, integer * 00019 ldb, doublereal *x, integer *ldx, doublereal *rcond, doublereal * 00020 rpvgrw, doublereal *berr, integer *n_err_bnds__, doublereal * 00021 err_bnds_norm__, doublereal *err_bnds_comp__, integer *nparams, 00022 doublereal *params, doublereal *work, integer *iwork, integer *info) 00023 { 00024 /* System generated locals */ 00025 integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1, 00026 x_offset, err_bnds_norm_dim1, err_bnds_norm_offset, 00027 err_bnds_comp_dim1, err_bnds_comp_offset, i__1; 00028 doublereal d__1, d__2; 00029 00030 /* Local variables */ 00031 integer j; 00032 doublereal amax, smin, smax; 00033 extern doublereal dla_syrpvgrw__(char *, integer *, integer *, doublereal 00034 *, integer *, doublereal *, integer *, integer *, doublereal *, 00035 ftnlen); 00036 extern logical lsame_(char *, char *); 00037 doublereal scond; 00038 logical equil, rcequ; 00039 extern doublereal dlamch_(char *); 00040 logical nofact; 00041 extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 00042 doublereal *, integer *, doublereal *, integer *), 00043 xerbla_(char *, integer *); 00044 doublereal bignum; 00045 integer infequ; 00046 extern /* Subroutine */ int dlaqsy_(char *, integer *, doublereal *, 00047 integer *, doublereal *, doublereal *, doublereal *, char *); 00048 doublereal smlnum; 00049 extern /* Subroutine */ int dsytrf_(char *, integer *, doublereal *, 00050 integer *, integer *, doublereal *, integer *, integer *), 00051 dlascl2_(integer *, integer *, doublereal *, doublereal *, 00052 integer *), dsytrs_(char *, integer *, integer *, doublereal *, 00053 integer *, integer *, doublereal *, integer *, integer *), 00054 dsyequb_(char *, integer *, doublereal *, integer *, doublereal * 00055 , doublereal *, doublereal *, doublereal *, integer *), 00056 dsyrfsx_(char *, char *, integer *, integer *, doublereal *, 00057 integer *, doublereal *, integer *, integer *, doublereal *, 00058 doublereal *, integer *, doublereal *, integer *, doublereal *, 00059 doublereal *, integer *, doublereal *, doublereal *, integer *, 00060 doublereal *, doublereal *, integer *, integer *); 00061 00062 00063 /* -- LAPACK routine (version 3.2.1) -- */ 00064 /* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */ 00065 /* -- Jason Riedy of Univ. of California Berkeley. -- */ 00066 /* -- April 2009 -- */ 00067 00068 /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ 00069 /* -- Univ. of California Berkeley and NAG Ltd. -- */ 00070 00071 /* .. */ 00072 /* .. Scalar Arguments .. */ 00073 /* .. */ 00074 /* .. Array Arguments .. */ 00075 /* .. */ 00076 00077 /* Purpose */ 00078 /* ======= */ 00079 00080 /* DSYSVXX uses the diagonal pivoting factorization to compute the */ 00081 /* solution to a double precision system of linear equations A * X = B, where A */ 00082 /* is an N-by-N symmetric matrix and X and B are N-by-NRHS matrices. */ 00083 00084 /* If requested, both normwise and maximum componentwise error bounds */ 00085 /* are returned. DSYSVXX will return a solution with a tiny */ 00086 /* guaranteed error (O(eps) where eps is the working machine */ 00087 /* precision) unless the matrix is very ill-conditioned, in which */ 00088 /* case a warning is returned. Relevant condition numbers also are */ 00089 /* calculated and returned. */ 00090 00091 /* DSYSVXX accepts user-provided factorizations and equilibration */ 00092 /* factors; see the definitions of the FACT and EQUED options. */ 00093 /* Solving with refinement and using a factorization from a previous */ 00094 /* DSYSVXX call will also produce a solution with either O(eps) */ 00095 /* errors or warnings, but we cannot make that claim for general */ 00096 /* user-provided factorizations and equilibration factors if they */ 00097 /* differ from what DSYSVXX would itself produce. */ 00098 00099 /* Description */ 00100 /* =========== */ 00101 00102 /* The following steps are performed: */ 00103 00104 /* 1. If FACT = 'E', double precision scaling factors are computed to equilibrate */ 00105 /* the system: */ 00106 00107 /* diag(S)*A*diag(S) *inv(diag(S))*X = diag(S)*B */ 00108 00109 /* Whether or not the system will be equilibrated depends on the */ 00110 /* scaling of the matrix A, but if equilibration is used, A is */ 00111 /* overwritten by diag(S)*A*diag(S) and B by diag(S)*B. */ 00112 00113 /* 2. If FACT = 'N' or 'E', the LU decomposition is used to factor */ 00114 /* the matrix A (after equilibration if FACT = 'E') as */ 00115 00116 /* A = U * D * U**T, if UPLO = 'U', or */ 00117 /* A = L * D * L**T, if UPLO = 'L', */ 00118 00119 /* where U (or L) is a product of permutation and unit upper (lower) */ 00120 /* triangular matrices, and D is symmetric and block diagonal with */ 00121 /* 1-by-1 and 2-by-2 diagonal blocks. */ 00122 00123 /* 3. If some D(i,i)=0, so that D is exactly singular, then the */ 00124 /* routine returns with INFO = i. Otherwise, the factored form of A */ 00125 /* is used to estimate the condition number of the matrix A (see */ 00126 /* argument RCOND). If the reciprocal of the condition number is */ 00127 /* less than machine precision, the routine still goes on to solve */ 00128 /* for X and compute error bounds as described below. */ 00129 00130 /* 4. The system of equations is solved for X using the factored form */ 00131 /* of A. */ 00132 00133 /* 5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero), */ 00134 /* the routine will use iterative refinement to try to get a small */ 00135 /* error and error bounds. Refinement calculates the residual to at */ 00136 /* least twice the working precision. */ 00137 00138 /* 6. If equilibration was used, the matrix X is premultiplied by */ 00139 /* diag(R) so that it solves the original system before */ 00140 /* equilibration. */ 00141 00142 /* Arguments */ 00143 /* ========= */ 00144 00145 /* Some optional parameters are bundled in the PARAMS array. These */ 00146 /* settings determine how refinement is performed, but often the */ 00147 /* defaults are acceptable. If the defaults are acceptable, users */ 00148 /* can pass NPARAMS = 0 which prevents the source code from accessing */ 00149 /* the PARAMS argument. */ 00150 00151 /* FACT (input) CHARACTER*1 */ 00152 /* Specifies whether or not the factored form of the matrix A is */ 00153 /* supplied on entry, and if not, whether the matrix A should be */ 00154 /* equilibrated before it is factored. */ 00155 /* = 'F': On entry, AF and IPIV contain the factored form of A. */ 00156 /* If EQUED is not 'N', the matrix A has been */ 00157 /* equilibrated with scaling factors given by S. */ 00158 /* A, AF, and IPIV are not modified. */ 00159 /* = 'N': The matrix A will be copied to AF and factored. */ 00160 /* = 'E': The matrix A will be equilibrated if necessary, then */ 00161 /* copied to AF and factored. */ 00162 00163 /* UPLO (input) CHARACTER*1 */ 00164 /* = 'U': Upper triangle of A is stored; */ 00165 /* = 'L': Lower triangle of A is stored. */ 00166 00167 /* N (input) INTEGER */ 00168 /* The number of linear equations, i.e., the order of the */ 00169 /* matrix A. N >= 0. */ 00170 00171 /* NRHS (input) INTEGER */ 00172 /* The number of right hand sides, i.e., the number of columns */ 00173 /* of the matrices B and X. NRHS >= 0. */ 00174 00175 /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */ 00176 /* The symmetric matrix A. If UPLO = 'U', the leading N-by-N */ 00177 /* upper triangular part of A contains the upper triangular */ 00178 /* part of the matrix A, and the strictly lower triangular */ 00179 /* part of A is not referenced. If UPLO = 'L', the leading */ 00180 /* N-by-N lower triangular part of A contains the lower */ 00181 /* triangular part of the matrix A, and the strictly upper */ 00182 /* triangular part of A is not referenced. */ 00183 00184 /* On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by */ 00185 /* diag(S)*A*diag(S). */ 00186 00187 /* LDA (input) INTEGER */ 00188 /* The leading dimension of the array A. LDA >= max(1,N). */ 00189 00190 /* AF (input or output) DOUBLE PRECISION array, dimension (LDAF,N) */ 00191 /* If FACT = 'F', then AF is an input argument and on entry */ 00192 /* contains the block diagonal matrix D and the multipliers */ 00193 /* used to obtain the factor U or L from the factorization A = */ 00194 /* U*D*U**T or A = L*D*L**T as computed by DSYTRF. */ 00195 00196 /* If FACT = 'N', then AF is an output argument and on exit */ 00197 /* returns the block diagonal matrix D and the multipliers */ 00198 /* used to obtain the factor U or L from the factorization A = */ 00199 /* U*D*U**T or A = L*D*L**T. */ 00200 00201 /* LDAF (input) INTEGER */ 00202 /* The leading dimension of the array AF. LDAF >= max(1,N). */ 00203 00204 /* IPIV (input or output) INTEGER array, dimension (N) */ 00205 /* If FACT = 'F', then IPIV is an input argument and on entry */ 00206 /* contains details of the interchanges and the block */ 00207 /* structure of D, as determined by DSYTRF. If IPIV(k) > 0, */ 00208 /* then rows and columns k and IPIV(k) were interchanged and */ 00209 /* D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U' and */ 00210 /* IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and */ 00211 /* -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2 */ 00212 /* diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0, */ 00213 /* then rows and columns k+1 and -IPIV(k) were interchanged */ 00214 /* and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */ 00215 00216 /* If FACT = 'N', then IPIV is an output argument and on exit */ 00217 /* contains details of the interchanges and the block */ 00218 /* structure of D, as determined by DSYTRF. */ 00219 00220 /* EQUED (input or output) CHARACTER*1 */ 00221 /* Specifies the form of equilibration that was done. */ 00222 /* = 'N': No equilibration (always true if FACT = 'N'). */ 00223 /* = 'Y': Both row and column equilibration, i.e., A has been */ 00224 /* replaced by diag(S) * A * diag(S). */ 00225 /* EQUED is an input argument if FACT = 'F'; otherwise, it is an */ 00226 /* output argument. */ 00227 00228 /* S (input or output) DOUBLE PRECISION array, dimension (N) */ 00229 /* The scale factors for A. If EQUED = 'Y', A is multiplied on */ 00230 /* the left and right by diag(S). S is an input argument if FACT = */ 00231 /* 'F'; otherwise, S is an output argument. If FACT = 'F' and EQUED */ 00232 /* = 'Y', each element of S must be positive. If S is output, each */ 00233 /* element of S is a power of the radix. If S is input, each element */ 00234 /* of S should be a power of the radix to ensure a reliable solution */ 00235 /* and error estimates. Scaling by powers of the radix does not cause */ 00236 /* rounding errors unless the result underflows or overflows. */ 00237 /* Rounding errors during scaling lead to refining with a matrix that */ 00238 /* is not equivalent to the input matrix, producing error estimates */ 00239 /* that may not be reliable. */ 00240 00241 /* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */ 00242 /* On entry, the N-by-NRHS right hand side matrix B. */ 00243 /* On exit, */ 00244 /* if EQUED = 'N', B is not modified; */ 00245 /* if EQUED = 'Y', B is overwritten by diag(S)*B; */ 00246 00247 /* LDB (input) INTEGER */ 00248 /* The leading dimension of the array B. LDB >= max(1,N). */ 00249 00250 /* X (output) DOUBLE PRECISION array, dimension (LDX,NRHS) */ 00251 /* If INFO = 0, the N-by-NRHS solution matrix X to the original */ 00252 /* system of equations. Note that A and B are modified on exit if */ 00253 /* EQUED .ne. 'N', and the solution to the equilibrated system is */ 00254 /* inv(diag(S))*X. */ 00255 00256 /* LDX (input) INTEGER */ 00257 /* The leading dimension of the array X. LDX >= max(1,N). */ 00258 00259 /* RCOND (output) DOUBLE PRECISION */ 00260 /* Reciprocal scaled condition number. This is an estimate of the */ 00261 /* reciprocal Skeel condition number of the matrix A after */ 00262 /* equilibration (if done). If this is less than the machine */ 00263 /* precision (in particular, if it is zero), the matrix is singular */ 00264 /* to working precision. Note that the error may still be small even */ 00265 /* if this number is very small and the matrix appears ill- */ 00266 /* conditioned. */ 00267 00268 /* RPVGRW (output) DOUBLE PRECISION */ 00269 /* Reciprocal pivot growth. On exit, this contains the reciprocal */ 00270 /* pivot growth factor norm(A)/norm(U). The "max absolute element" */ 00271 /* norm is used. If this is much less than 1, then the stability of */ 00272 /* the LU factorization of the (equilibrated) matrix A could be poor. */ 00273 /* This also means that the solution X, estimated condition numbers, */ 00274 /* and error bounds could be unreliable. If factorization fails with */ 00275 /* 0<INFO<=N, then this contains the reciprocal pivot growth factor */ 00276 /* for the leading INFO columns of A. */ 00277 00278 /* BERR (output) DOUBLE PRECISION array, dimension (NRHS) */ 00279 /* Componentwise relative backward error. This is the */ 00280 /* componentwise relative backward error of each solution vector X(j) */ 00281 /* (i.e., the smallest relative change in any element of A or B that */ 00282 /* makes X(j) an exact solution). */ 00283 00284 /* N_ERR_BNDS (input) INTEGER */ 00285 /* Number of error bounds to return for each right hand side */ 00286 /* and each type (normwise or componentwise). See ERR_BNDS_NORM and */ 00287 /* ERR_BNDS_COMP below. */ 00288 00289 /* ERR_BNDS_NORM (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */ 00290 /* For each right-hand side, this array contains information about */ 00291 /* various error bounds and condition numbers corresponding to the */ 00292 /* normwise relative error, which is defined as follows: */ 00293 00294 /* Normwise relative error in the ith solution vector: */ 00295 /* max_j (abs(XTRUE(j,i) - X(j,i))) */ 00296 /* ------------------------------ */ 00297 /* max_j abs(X(j,i)) */ 00298 00299 /* The array is indexed by the type of error information as described */ 00300 /* below. There currently are up to three pieces of information */ 00301 /* returned. */ 00302 00303 /* The first index in ERR_BNDS_NORM(i,:) corresponds to the ith */ 00304 /* right-hand side. */ 00305 00306 /* The second index in ERR_BNDS_NORM(:,err) contains the following */ 00307 /* three fields: */ 00308 /* err = 1 "Trust/don't trust" boolean. Trust the answer if the */ 00309 /* reciprocal condition number is less than the threshold */ 00310 /* sqrt(n) * dlamch('Epsilon'). */ 00311 00312 /* err = 2 "Guaranteed" error bound: The estimated forward error, */ 00313 /* almost certainly within a factor of 10 of the true error */ 00314 /* so long as the next entry is greater than the threshold */ 00315 /* sqrt(n) * dlamch('Epsilon'). This error bound should only */ 00316 /* be trusted if the previous boolean is true. */ 00317 00318 /* err = 3 Reciprocal condition number: Estimated normwise */ 00319 /* reciprocal condition number. Compared with the threshold */ 00320 /* sqrt(n) * dlamch('Epsilon') to determine if the error */ 00321 /* estimate is "guaranteed". These reciprocal condition */ 00322 /* numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */ 00323 /* appropriately scaled matrix Z. */ 00324 /* Let Z = S*A, where S scales each row by a power of the */ 00325 /* radix so all absolute row sums of Z are approximately 1. */ 00326 00327 /* See Lapack Working Note 165 for further details and extra */ 00328 /* cautions. */ 00329 00330 /* ERR_BNDS_COMP (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */ 00331 /* For each right-hand side, this array contains information about */ 00332 /* various error bounds and condition numbers corresponding to the */ 00333 /* componentwise relative error, which is defined as follows: */ 00334 00335 /* Componentwise relative error in the ith solution vector: */ 00336 /* abs(XTRUE(j,i) - X(j,i)) */ 00337 /* max_j ---------------------- */ 00338 /* abs(X(j,i)) */ 00339 00340 /* The array is indexed by the right-hand side i (on which the */ 00341 /* componentwise relative error depends), and the type of error */ 00342 /* information as described below. There currently are up to three */ 00343 /* pieces of information returned for each right-hand side. If */ 00344 /* componentwise accuracy is not requested (PARAMS(3) = 0.0), then */ 00345 /* ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most */ 00346 /* the first (:,N_ERR_BNDS) entries are returned. */ 00347 00348 /* The first index in ERR_BNDS_COMP(i,:) corresponds to the ith */ 00349 /* right-hand side. */ 00350 00351 /* The second index in ERR_BNDS_COMP(:,err) contains the following */ 00352 /* three fields: */ 00353 /* err = 1 "Trust/don't trust" boolean. Trust the answer if the */ 00354 /* reciprocal condition number is less than the threshold */ 00355 /* sqrt(n) * dlamch('Epsilon'). */ 00356 00357 /* err = 2 "Guaranteed" error bound: The estimated forward error, */ 00358 /* almost certainly within a factor of 10 of the true error */ 00359 /* so long as the next entry is greater than the threshold */ 00360 /* sqrt(n) * dlamch('Epsilon'). This error bound should only */ 00361 /* be trusted if the previous boolean is true. */ 00362 00363 /* err = 3 Reciprocal condition number: Estimated componentwise */ 00364 /* reciprocal condition number. Compared with the threshold */ 00365 /* sqrt(n) * dlamch('Epsilon') to determine if the error */ 00366 /* estimate is "guaranteed". These reciprocal condition */ 00367 /* numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */ 00368 /* appropriately scaled matrix Z. */ 00369 /* Let Z = S*(A*diag(x)), where x is the solution for the */ 00370 /* current right-hand side and S scales each row of */ 00371 /* A*diag(x) by a power of the radix so all absolute row */ 00372 /* sums of Z are approximately 1. */ 00373 00374 /* See Lapack Working Note 165 for further details and extra */ 00375 /* cautions. */ 00376 00377 /* NPARAMS (input) INTEGER */ 00378 /* Specifies the number of parameters set in PARAMS. If .LE. 0, the */ 00379 /* PARAMS array is never referenced and default values are used. */ 00380 00381 /* PARAMS (input / output) DOUBLE PRECISION array, dimension NPARAMS */ 00382 /* Specifies algorithm parameters. If an entry is .LT. 0.0, then */ 00383 /* that entry will be filled with default value used for that */ 00384 /* parameter. Only positions up to NPARAMS are accessed; defaults */ 00385 /* are used for higher-numbered parameters. */ 00386 00387 /* PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative */ 00388 /* refinement or not. */ 00389 /* Default: 1.0D+0 */ 00390 /* = 0.0 : No refinement is performed, and no error bounds are */ 00391 /* computed. */ 00392 /* = 1.0 : Use the extra-precise refinement algorithm. */ 00393 /* (other values are reserved for future use) */ 00394 00395 /* PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual */ 00396 /* computations allowed for refinement. */ 00397 /* Default: 10 */ 00398 /* Aggressive: Set to 100 to permit convergence using approximate */ 00399 /* factorizations or factorizations other than LU. If */ 00400 /* the factorization uses a technique other than */ 00401 /* Gaussian elimination, the guarantees in */ 00402 /* err_bnds_norm and err_bnds_comp may no longer be */ 00403 /* trustworthy. */ 00404 00405 /* PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code */ 00406 /* will attempt to find a solution with small componentwise */ 00407 /* relative error in the double-precision algorithm. Positive */ 00408 /* is true, 0.0 is false. */ 00409 /* Default: 1.0 (attempt componentwise convergence) */ 00410 00411 /* WORK (workspace) DOUBLE PRECISION array, dimension (4*N) */ 00412 00413 /* IWORK (workspace) INTEGER array, dimension (N) */ 00414 00415 /* INFO (output) INTEGER */ 00416 /* = 0: Successful exit. The solution to every right-hand side is */ 00417 /* guaranteed. */ 00418 /* < 0: If INFO = -i, the i-th argument had an illegal value */ 00419 /* > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization */ 00420 /* has been completed, but the factor U is exactly singular, so */ 00421 /* the solution and error bounds could not be computed. RCOND = 0 */ 00422 /* is returned. */ 00423 /* = N+J: The solution corresponding to the Jth right-hand side is */ 00424 /* not guaranteed. The solutions corresponding to other right- */ 00425 /* hand sides K with K > J may not be guaranteed as well, but */ 00426 /* only the first such right-hand side is reported. If a small */ 00427 /* componentwise error is not requested (PARAMS(3) = 0.0) then */ 00428 /* the Jth right-hand side is the first with a normwise error */ 00429 /* bound that is not guaranteed (the smallest J such */ 00430 /* that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) */ 00431 /* the Jth right-hand side is the first with either a normwise or */ 00432 /* componentwise error bound that is not guaranteed (the smallest */ 00433 /* J such that either ERR_BNDS_NORM(J,1) = 0.0 or */ 00434 /* ERR_BNDS_COMP(J,1) = 0.0). See the definition of */ 00435 /* ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information */ 00436 /* about all of the right-hand sides check ERR_BNDS_NORM or */ 00437 /* ERR_BNDS_COMP. */ 00438 00439 /* ================================================================== */ 00440 00441 /* .. Parameters .. */ 00442 /* .. */ 00443 /* .. Local Scalars .. */ 00444 /* .. */ 00445 /* .. External Functions .. */ 00446 /* .. */ 00447 /* .. External Subroutines .. */ 00448 /* .. */ 00449 /* .. Intrinsic Functions .. */ 00450 /* .. */ 00451 /* .. Executable Statements .. */ 00452 00453 /* Parameter adjustments */ 00454 err_bnds_comp_dim1 = *nrhs; 00455 err_bnds_comp_offset = 1 + err_bnds_comp_dim1; 00456 err_bnds_comp__ -= err_bnds_comp_offset; 00457 err_bnds_norm_dim1 = *nrhs; 00458 err_bnds_norm_offset = 1 + err_bnds_norm_dim1; 00459 err_bnds_norm__ -= err_bnds_norm_offset; 00460 a_dim1 = *lda; 00461 a_offset = 1 + a_dim1; 00462 a -= a_offset; 00463 af_dim1 = *ldaf; 00464 af_offset = 1 + af_dim1; 00465 af -= af_offset; 00466 --ipiv; 00467 --s; 00468 b_dim1 = *ldb; 00469 b_offset = 1 + b_dim1; 00470 b -= b_offset; 00471 x_dim1 = *ldx; 00472 x_offset = 1 + x_dim1; 00473 x -= x_offset; 00474 --berr; 00475 --params; 00476 --work; 00477 --iwork; 00478 00479 /* Function Body */ 00480 *info = 0; 00481 nofact = lsame_(fact, "N"); 00482 equil = lsame_(fact, "E"); 00483 smlnum = dlamch_("Safe minimum"); 00484 bignum = 1. / smlnum; 00485 if (nofact || equil) { 00486 *(unsigned char *)equed = 'N'; 00487 rcequ = FALSE_; 00488 } else { 00489 rcequ = lsame_(equed, "Y"); 00490 } 00491 00492 /* Default is failure. If an input parameter is wrong or */ 00493 /* factorization fails, make everything look horrible. Only the */ 00494 /* pivot growth is set here, the rest is initialized in DSYRFSX. */ 00495 00496 *rpvgrw = 0.; 00497 00498 /* Test the input parameters. PARAMS is not tested until DSYRFSX. */ 00499 00500 if (! nofact && ! equil && ! lsame_(fact, "F")) { 00501 *info = -1; 00502 } else if (! lsame_(uplo, "U") && ! lsame_(uplo, 00503 "L")) { 00504 *info = -2; 00505 } else if (*n < 0) { 00506 *info = -3; 00507 } else if (*nrhs < 0) { 00508 *info = -4; 00509 } else if (*lda < max(1,*n)) { 00510 *info = -6; 00511 } else if (*ldaf < max(1,*n)) { 00512 *info = -8; 00513 } else if (lsame_(fact, "F") && ! (rcequ || lsame_( 00514 equed, "N"))) { 00515 *info = -9; 00516 } else { 00517 if (rcequ) { 00518 smin = bignum; 00519 smax = 0.; 00520 i__1 = *n; 00521 for (j = 1; j <= i__1; ++j) { 00522 /* Computing MIN */ 00523 d__1 = smin, d__2 = s[j]; 00524 smin = min(d__1,d__2); 00525 /* Computing MAX */ 00526 d__1 = smax, d__2 = s[j]; 00527 smax = max(d__1,d__2); 00528 /* L10: */ 00529 } 00530 if (smin <= 0.) { 00531 *info = -10; 00532 } else if (*n > 0) { 00533 scond = max(smin,smlnum) / min(smax,bignum); 00534 } else { 00535 scond = 1.; 00536 } 00537 } 00538 if (*info == 0) { 00539 if (*ldb < max(1,*n)) { 00540 *info = -12; 00541 } else if (*ldx < max(1,*n)) { 00542 *info = -14; 00543 } 00544 } 00545 } 00546 00547 if (*info != 0) { 00548 i__1 = -(*info); 00549 xerbla_("DSYSVXX", &i__1); 00550 return 0; 00551 } 00552 00553 if (equil) { 00554 00555 /* Compute row and column scalings to equilibrate the matrix A. */ 00556 00557 dsyequb_(uplo, n, &a[a_offset], lda, &s[1], &scond, &amax, &work[1], & 00558 infequ); 00559 if (infequ == 0) { 00560 00561 /* Equilibrate the matrix. */ 00562 00563 dlaqsy_(uplo, n, &a[a_offset], lda, &s[1], &scond, &amax, equed); 00564 rcequ = lsame_(equed, "Y"); 00565 } 00566 } 00567 00568 /* Scale the right-hand side. */ 00569 00570 if (rcequ) { 00571 dlascl2_(n, nrhs, &s[1], &b[b_offset], ldb); 00572 } 00573 00574 if (nofact || equil) { 00575 00576 /* Compute the LU factorization of A. */ 00577 00578 dlacpy_(uplo, n, n, &a[a_offset], lda, &af[af_offset], ldaf); 00579 i__1 = max(1,*n) * 5; 00580 dsytrf_(uplo, n, &af[af_offset], ldaf, &ipiv[1], &work[1], &i__1, 00581 info); 00582 00583 /* Return if INFO is non-zero. */ 00584 00585 if (*info > 0) { 00586 00587 /* Pivot in column INFO is exactly 0 */ 00588 /* Compute the reciprocal pivot growth factor of the */ 00589 /* leading rank-deficient INFO columns of A. */ 00590 00591 if (*n > 0) { 00592 *rpvgrw = dla_syrpvgrw__(uplo, n, info, &a[a_offset], lda, & 00593 af[af_offset], ldaf, &ipiv[1], &work[1], (ftnlen)1); 00594 } 00595 return 0; 00596 } 00597 } 00598 00599 /* Compute the reciprocal pivot growth factor RPVGRW. */ 00600 00601 if (*n > 0) { 00602 *rpvgrw = dla_syrpvgrw__(uplo, n, info, &a[a_offset], lda, &af[ 00603 af_offset], ldaf, &ipiv[1], &work[1], (ftnlen)1); 00604 } 00605 00606 /* Compute the solution matrix X. */ 00607 00608 dlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx); 00609 dsytrs_(uplo, n, nrhs, &af[af_offset], ldaf, &ipiv[1], &x[x_offset], ldx, 00610 info); 00611 00612 /* Use iterative refinement to improve the computed solution and */ 00613 /* compute error bounds and backward error estimates for it. */ 00614 00615 dsyrfsx_(uplo, equed, n, nrhs, &a[a_offset], lda, &af[af_offset], ldaf, & 00616 ipiv[1], &s[1], &b[b_offset], ldb, &x[x_offset], ldx, rcond, & 00617 berr[1], n_err_bnds__, &err_bnds_norm__[err_bnds_norm_offset], & 00618 err_bnds_comp__[err_bnds_comp_offset], nparams, ¶ms[1], &work[ 00619 1], &iwork[1], info); 00620 00621 /* Scale solutions. */ 00622 00623 if (rcequ) { 00624 dlascl2_(n, nrhs, &s[1], &x[x_offset], ldx); 00625 } 00626 00627 return 0; 00628 00629 /* End of DSYSVXX */ 00630 00631 } /* dsysvxx_ */