dsyevr.c
Go to the documentation of this file.
00001 /* dsyevr.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__10 = 10;
00019 static integer c__1 = 1;
00020 static integer c__2 = 2;
00021 static integer c__3 = 3;
00022 static integer c__4 = 4;
00023 static integer c_n1 = -1;
00024 
00025 /* Subroutine */ int dsyevr_(char *jobz, char *range, char *uplo, integer *n, 
00026         doublereal *a, integer *lda, doublereal *vl, doublereal *vu, integer *
00027         il, integer *iu, doublereal *abstol, integer *m, doublereal *w, 
00028         doublereal *z__, integer *ldz, integer *isuppz, doublereal *work, 
00029         integer *lwork, integer *iwork, integer *liwork, integer *info)
00030 {
00031     /* System generated locals */
00032     integer a_dim1, a_offset, z_dim1, z_offset, i__1, i__2;
00033     doublereal d__1, d__2;
00034 
00035     /* Builtin functions */
00036     double sqrt(doublereal);
00037 
00038     /* Local variables */
00039     integer i__, j, nb, jj;
00040     doublereal eps, vll, vuu, tmp1;
00041     integer indd, inde;
00042     doublereal anrm;
00043     integer imax;
00044     doublereal rmin, rmax;
00045     integer inddd, indee;
00046     extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
00047             integer *);
00048     doublereal sigma;
00049     extern logical lsame_(char *, char *);
00050     integer iinfo;
00051     char order[1];
00052     integer indwk;
00053     extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
00054             doublereal *, integer *), dswap_(integer *, doublereal *, integer 
00055             *, doublereal *, integer *);
00056     integer lwmin;
00057     logical lower, wantz;
00058     extern doublereal dlamch_(char *);
00059     logical alleig, indeig;
00060     integer iscale, ieeeok, indibl, indifl;
00061     logical valeig;
00062     doublereal safmin;
00063     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
00064             integer *, integer *);
00065     extern /* Subroutine */ int xerbla_(char *, integer *);
00066     doublereal abstll, bignum;
00067     integer indtau, indisp;
00068     extern /* Subroutine */ int dstein_(integer *, doublereal *, doublereal *, 
00069              integer *, doublereal *, integer *, integer *, doublereal *, 
00070             integer *, doublereal *, integer *, integer *, integer *), 
00071             dsterf_(integer *, doublereal *, doublereal *, integer *);
00072     integer indiwo, indwkn;
00073     extern doublereal dlansy_(char *, char *, integer *, doublereal *, 
00074             integer *, doublereal *);
00075     extern /* Subroutine */ int dstebz_(char *, char *, integer *, doublereal 
00076             *, doublereal *, integer *, integer *, doublereal *, doublereal *, 
00077              doublereal *, integer *, integer *, doublereal *, integer *, 
00078             integer *, doublereal *, integer *, integer *), 
00079             dstemr_(char *, char *, integer *, doublereal *, doublereal *, 
00080             doublereal *, doublereal *, integer *, integer *, integer *, 
00081             doublereal *, doublereal *, integer *, integer *, integer *, 
00082             logical *, doublereal *, integer *, integer *, integer *, integer 
00083             *);
00084     integer liwmin;
00085     logical tryrac;
00086     extern /* Subroutine */ int dormtr_(char *, char *, char *, integer *, 
00087             integer *, doublereal *, integer *, doublereal *, doublereal *, 
00088             integer *, doublereal *, integer *, integer *);
00089     integer llwrkn, llwork, nsplit;
00090     doublereal smlnum;
00091     extern /* Subroutine */ int dsytrd_(char *, integer *, doublereal *, 
00092             integer *, doublereal *, doublereal *, doublereal *, doublereal *, 
00093              integer *, integer *);
00094     integer lwkopt;
00095     logical lquery;
00096 
00097 
00098 /*  -- LAPACK driver routine (version 3.2) -- */
00099 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00100 /*     November 2006 */
00101 
00102 /*     .. Scalar Arguments .. */
00103 /*     .. */
00104 /*     .. Array Arguments .. */
00105 /*     .. */
00106 
00107 /*  Purpose */
00108 /*  ======= */
00109 
00110 /*  DSYEVR computes selected eigenvalues and, optionally, eigenvectors */
00111 /*  of a real symmetric matrix A.  Eigenvalues and eigenvectors can be */
00112 /*  selected by specifying either a range of values or a range of */
00113 /*  indices for the desired eigenvalues. */
00114 
00115 /*  DSYEVR first reduces the matrix A to tridiagonal form T with a call */
00116 /*  to DSYTRD.  Then, whenever possible, DSYEVR calls DSTEMR to compute */
00117 /*  the eigenspectrum using Relatively Robust Representations.  DSTEMR */
00118 /*  computes eigenvalues by the dqds algorithm, while orthogonal */
00119 /*  eigenvectors are computed from various "good" L D L^T representations */
00120 /*  (also known as Relatively Robust Representations). Gram-Schmidt */
00121 /*  orthogonalization is avoided as far as possible. More specifically, */
00122 /*  the various steps of the algorithm are as follows. */
00123 
00124 /*  For each unreduced block (submatrix) of T, */
00125 /*     (a) Compute T - sigma I  = L D L^T, so that L and D */
00126 /*         define all the wanted eigenvalues to high relative accuracy. */
00127 /*         This means that small relative changes in the entries of D and L */
00128 /*         cause only small relative changes in the eigenvalues and */
00129 /*         eigenvectors. The standard (unfactored) representation of the */
00130 /*         tridiagonal matrix T does not have this property in general. */
00131 /*     (b) Compute the eigenvalues to suitable accuracy. */
00132 /*         If the eigenvectors are desired, the algorithm attains full */
00133 /*         accuracy of the computed eigenvalues only right before */
00134 /*         the corresponding vectors have to be computed, see steps c) and d). */
00135 /*     (c) For each cluster of close eigenvalues, select a new */
00136 /*         shift close to the cluster, find a new factorization, and refine */
00137 /*         the shifted eigenvalues to suitable accuracy. */
00138 /*     (d) For each eigenvalue with a large enough relative separation compute */
00139 /*         the corresponding eigenvector by forming a rank revealing twisted */
00140 /*         factorization. Go back to (c) for any clusters that remain. */
00141 
00142 /*  The desired accuracy of the output can be specified by the input */
00143 /*  parameter ABSTOL. */
00144 
00145 /*  For more details, see DSTEMR's documentation and: */
00146 /*  - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations */
00147 /*    to compute orthogonal eigenvectors of symmetric tridiagonal matrices," */
00148 /*    Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004. */
00149 /*  - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and */
00150 /*    Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, */
00151 /*    2004.  Also LAPACK Working Note 154. */
00152 /*  - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric */
00153 /*    tridiagonal eigenvalue/eigenvector problem", */
00154 /*    Computer Science Division Technical Report No. UCB/CSD-97-971, */
00155 /*    UC Berkeley, May 1997. */
00156 
00157 
00158 /*  Note 1 : DSYEVR calls DSTEMR when the full spectrum is requested */
00159 /*  on machines which conform to the ieee-754 floating point standard. */
00160 /*  DSYEVR calls DSTEBZ and SSTEIN on non-ieee machines and */
00161 /*  when partial spectrum requests are made. */
00162 
00163 /*  Normal execution of DSTEMR may create NaNs and infinities and */
00164 /*  hence may abort due to a floating point exception in environments */
00165 /*  which do not handle NaNs and infinities in the ieee standard default */
00166 /*  manner. */
00167 
00168 /*  Arguments */
00169 /*  ========= */
00170 
00171 /*  JOBZ    (input) CHARACTER*1 */
00172 /*          = 'N':  Compute eigenvalues only; */
00173 /*          = 'V':  Compute eigenvalues and eigenvectors. */
00174 
00175 /*  RANGE   (input) CHARACTER*1 */
00176 /*          = 'A': all eigenvalues will be found. */
00177 /*          = 'V': all eigenvalues in the half-open interval (VL,VU] */
00178 /*                 will be found. */
00179 /*          = 'I': the IL-th through IU-th eigenvalues will be found. */
00180 /* ********* For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and */
00181 /* ********* DSTEIN are called */
00182 
00183 /*  UPLO    (input) CHARACTER*1 */
00184 /*          = 'U':  Upper triangle of A is stored; */
00185 /*          = 'L':  Lower triangle of A is stored. */
00186 
00187 /*  N       (input) INTEGER */
00188 /*          The order of the matrix A.  N >= 0. */
00189 
00190 /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
00191 /*          On entry, the symmetric matrix A.  If UPLO = 'U', the */
00192 /*          leading N-by-N upper triangular part of A contains the */
00193 /*          upper triangular part of the matrix A.  If UPLO = 'L', */
00194 /*          the leading N-by-N lower triangular part of A contains */
00195 /*          the lower triangular part of the matrix A. */
00196 /*          On exit, the lower triangle (if UPLO='L') or the upper */
00197 /*          triangle (if UPLO='U') of A, including the diagonal, is */
00198 /*          destroyed. */
00199 
00200 /*  LDA     (input) INTEGER */
00201 /*          The leading dimension of the array A.  LDA >= max(1,N). */
00202 
00203 /*  VL      (input) DOUBLE PRECISION */
00204 /*  VU      (input) DOUBLE PRECISION */
00205 /*          If RANGE='V', the lower and upper bounds of the interval to */
00206 /*          be searched for eigenvalues. VL < VU. */
00207 /*          Not referenced if RANGE = 'A' or 'I'. */
00208 
00209 /*  IL      (input) INTEGER */
00210 /*  IU      (input) INTEGER */
00211 /*          If RANGE='I', the indices (in ascending order) of the */
00212 /*          smallest and largest eigenvalues to be returned. */
00213 /*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
00214 /*          Not referenced if RANGE = 'A' or 'V'. */
00215 
00216 /*  ABSTOL  (input) DOUBLE PRECISION */
00217 /*          The absolute error tolerance for the eigenvalues. */
00218 /*          An approximate eigenvalue is accepted as converged */
00219 /*          when it is determined to lie in an interval [a,b] */
00220 /*          of width less than or equal to */
00221 
00222 /*                  ABSTOL + EPS *   max( |a|,|b| ) , */
00223 
00224 /*          where EPS is the machine precision.  If ABSTOL is less than */
00225 /*          or equal to zero, then  EPS*|T|  will be used in its place, */
00226 /*          where |T| is the 1-norm of the tridiagonal matrix obtained */
00227 /*          by reducing A to tridiagonal form. */
00228 
00229 /*          See "Computing Small Singular Values of Bidiagonal Matrices */
00230 /*          with Guaranteed High Relative Accuracy," by Demmel and */
00231 /*          Kahan, LAPACK Working Note #3. */
00232 
00233 /*          If high relative accuracy is important, set ABSTOL to */
00234 /*          DLAMCH( 'Safe minimum' ).  Doing so will guarantee that */
00235 /*          eigenvalues are computed to high relative accuracy when */
00236 /*          possible in future releases.  The current code does not */
00237 /*          make any guarantees about high relative accuracy, but */
00238 /*          future releases will. See J. Barlow and J. Demmel, */
00239 /*          "Computing Accurate Eigensystems of Scaled Diagonally */
00240 /*          Dominant Matrices", LAPACK Working Note #7, for a discussion */
00241 /*          of which matrices define their eigenvalues to high relative */
00242 /*          accuracy. */
00243 
00244 /*  M       (output) INTEGER */
00245 /*          The total number of eigenvalues found.  0 <= M <= N. */
00246 /*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
00247 
00248 /*  W       (output) DOUBLE PRECISION array, dimension (N) */
00249 /*          The first M elements contain the selected eigenvalues in */
00250 /*          ascending order. */
00251 
00252 /*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M)) */
00253 /*          If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
00254 /*          contain the orthonormal eigenvectors of the matrix A */
00255 /*          corresponding to the selected eigenvalues, with the i-th */
00256 /*          column of Z holding the eigenvector associated with W(i). */
00257 /*          If JOBZ = 'N', then Z is not referenced. */
00258 /*          Note: the user must ensure that at least max(1,M) columns are */
00259 /*          supplied in the array Z; if RANGE = 'V', the exact value of M */
00260 /*          is not known in advance and an upper bound must be used. */
00261 /*          Supplying N columns is always safe. */
00262 
00263 /*  LDZ     (input) INTEGER */
00264 /*          The leading dimension of the array Z.  LDZ >= 1, and if */
00265 /*          JOBZ = 'V', LDZ >= max(1,N). */
00266 
00267 /*  ISUPPZ  (output) INTEGER array, dimension ( 2*max(1,M) ) */
00268 /*          The support of the eigenvectors in Z, i.e., the indices */
00269 /*          indicating the nonzero elements in Z. The i-th eigenvector */
00270 /*          is nonzero only in elements ISUPPZ( 2*i-1 ) through */
00271 /*          ISUPPZ( 2*i ). */
00272 /* ********* Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1 */
00273 
00274 /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
00275 /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
00276 
00277 /*  LWORK   (input) INTEGER */
00278 /*          The dimension of the array WORK.  LWORK >= max(1,26*N). */
00279 /*          For optimal efficiency, LWORK >= (NB+6)*N, */
00280 /*          where NB is the max of the blocksize for DSYTRD and DORMTR */
00281 /*          returned by ILAENV. */
00282 
00283 /*          If LWORK = -1, then a workspace query is assumed; the routine */
00284 /*          only calculates the optimal size of the WORK array, returns */
00285 /*          this value as the first entry of the WORK array, and no error */
00286 /*          message related to LWORK is issued by XERBLA. */
00287 
00288 /*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
00289 /*          On exit, if INFO = 0, IWORK(1) returns the optimal LWORK. */
00290 
00291 /*  LIWORK  (input) INTEGER */
00292 /*          The dimension of the array IWORK.  LIWORK >= max(1,10*N). */
00293 
00294 /*          If LIWORK = -1, then a workspace query is assumed; the */
00295 /*          routine only calculates the optimal size of the IWORK array, */
00296 /*          returns this value as the first entry of the IWORK array, and */
00297 /*          no error message related to LIWORK is issued by XERBLA. */
00298 
00299 /*  INFO    (output) INTEGER */
00300 /*          = 0:  successful exit */
00301 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00302 /*          > 0:  Internal error */
00303 
00304 /*  Further Details */
00305 /*  =============== */
00306 
00307 /*  Based on contributions by */
00308 /*     Inderjit Dhillon, IBM Almaden, USA */
00309 /*     Osni Marques, LBNL/NERSC, USA */
00310 /*     Ken Stanley, Computer Science Division, University of */
00311 /*       California at Berkeley, USA */
00312 /*     Jason Riedy, Computer Science Division, University of */
00313 /*       California at Berkeley, USA */
00314 
00315 /* ===================================================================== */
00316 
00317 /*     .. Parameters .. */
00318 /*     .. */
00319 /*     .. Local Scalars .. */
00320 /*     .. */
00321 /*     .. External Functions .. */
00322 /*     .. */
00323 /*     .. External Subroutines .. */
00324 /*     .. */
00325 /*     .. Intrinsic Functions .. */
00326 /*     .. */
00327 /*     .. Executable Statements .. */
00328 
00329 /*     Test the input parameters. */
00330 
00331     /* Parameter adjustments */
00332     a_dim1 = *lda;
00333     a_offset = 1 + a_dim1;
00334     a -= a_offset;
00335     --w;
00336     z_dim1 = *ldz;
00337     z_offset = 1 + z_dim1;
00338     z__ -= z_offset;
00339     --isuppz;
00340     --work;
00341     --iwork;
00342 
00343     /* Function Body */
00344     ieeeok = ilaenv_(&c__10, "DSYEVR", "N", &c__1, &c__2, &c__3, &c__4);
00345 
00346     lower = lsame_(uplo, "L");
00347     wantz = lsame_(jobz, "V");
00348     alleig = lsame_(range, "A");
00349     valeig = lsame_(range, "V");
00350     indeig = lsame_(range, "I");
00351 
00352     lquery = *lwork == -1 || *liwork == -1;
00353 
00354 /* Computing MAX */
00355     i__1 = 1, i__2 = *n * 26;
00356     lwmin = max(i__1,i__2);
00357 /* Computing MAX */
00358     i__1 = 1, i__2 = *n * 10;
00359     liwmin = max(i__1,i__2);
00360 
00361     *info = 0;
00362     if (! (wantz || lsame_(jobz, "N"))) {
00363         *info = -1;
00364     } else if (! (alleig || valeig || indeig)) {
00365         *info = -2;
00366     } else if (! (lower || lsame_(uplo, "U"))) {
00367         *info = -3;
00368     } else if (*n < 0) {
00369         *info = -4;
00370     } else if (*lda < max(1,*n)) {
00371         *info = -6;
00372     } else {
00373         if (valeig) {
00374             if (*n > 0 && *vu <= *vl) {
00375                 *info = -8;
00376             }
00377         } else if (indeig) {
00378             if (*il < 1 || *il > max(1,*n)) {
00379                 *info = -9;
00380             } else if (*iu < min(*n,*il) || *iu > *n) {
00381                 *info = -10;
00382             }
00383         }
00384     }
00385     if (*info == 0) {
00386         if (*ldz < 1 || wantz && *ldz < *n) {
00387             *info = -15;
00388         } else if (*lwork < lwmin && ! lquery) {
00389             *info = -18;
00390         } else if (*liwork < liwmin && ! lquery) {
00391             *info = -20;
00392         }
00393     }
00394 
00395     if (*info == 0) {
00396         nb = ilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1);
00397 /* Computing MAX */
00398         i__1 = nb, i__2 = ilaenv_(&c__1, "DORMTR", uplo, n, &c_n1, &c_n1, &
00399                 c_n1);
00400         nb = max(i__1,i__2);
00401 /* Computing MAX */
00402         i__1 = (nb + 1) * *n;
00403         lwkopt = max(i__1,lwmin);
00404         work[1] = (doublereal) lwkopt;
00405         iwork[1] = liwmin;
00406     }
00407 
00408     if (*info != 0) {
00409         i__1 = -(*info);
00410         xerbla_("DSYEVR", &i__1);
00411         return 0;
00412     } else if (lquery) {
00413         return 0;
00414     }
00415 
00416 /*     Quick return if possible */
00417 
00418     *m = 0;
00419     if (*n == 0) {
00420         work[1] = 1.;
00421         return 0;
00422     }
00423 
00424     if (*n == 1) {
00425         work[1] = 7.;
00426         if (alleig || indeig) {
00427             *m = 1;
00428             w[1] = a[a_dim1 + 1];
00429         } else {
00430             if (*vl < a[a_dim1 + 1] && *vu >= a[a_dim1 + 1]) {
00431                 *m = 1;
00432                 w[1] = a[a_dim1 + 1];
00433             }
00434         }
00435         if (wantz) {
00436             z__[z_dim1 + 1] = 1.;
00437         }
00438         return 0;
00439     }
00440 
00441 /*     Get machine constants. */
00442 
00443     safmin = dlamch_("Safe minimum");
00444     eps = dlamch_("Precision");
00445     smlnum = safmin / eps;
00446     bignum = 1. / smlnum;
00447     rmin = sqrt(smlnum);
00448 /* Computing MIN */
00449     d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin));
00450     rmax = min(d__1,d__2);
00451 
00452 /*     Scale matrix to allowable range, if necessary. */
00453 
00454     iscale = 0;
00455     abstll = *abstol;
00456     vll = *vl;
00457     vuu = *vu;
00458     anrm = dlansy_("M", uplo, n, &a[a_offset], lda, &work[1]);
00459     if (anrm > 0. && anrm < rmin) {
00460         iscale = 1;
00461         sigma = rmin / anrm;
00462     } else if (anrm > rmax) {
00463         iscale = 1;
00464         sigma = rmax / anrm;
00465     }
00466     if (iscale == 1) {
00467         if (lower) {
00468             i__1 = *n;
00469             for (j = 1; j <= i__1; ++j) {
00470                 i__2 = *n - j + 1;
00471                 dscal_(&i__2, &sigma, &a[j + j * a_dim1], &c__1);
00472 /* L10: */
00473             }
00474         } else {
00475             i__1 = *n;
00476             for (j = 1; j <= i__1; ++j) {
00477                 dscal_(&j, &sigma, &a[j * a_dim1 + 1], &c__1);
00478 /* L20: */
00479             }
00480         }
00481         if (*abstol > 0.) {
00482             abstll = *abstol * sigma;
00483         }
00484         if (valeig) {
00485             vll = *vl * sigma;
00486             vuu = *vu * sigma;
00487         }
00488     }
00489 /*     Initialize indices into workspaces.  Note: The IWORK indices are */
00490 /*     used only if DSTERF or DSTEMR fail. */
00491 /*     WORK(INDTAU:INDTAU+N-1) stores the scalar factors of the */
00492 /*     elementary reflectors used in DSYTRD. */
00493     indtau = 1;
00494 /*     WORK(INDD:INDD+N-1) stores the tridiagonal's diagonal entries. */
00495     indd = indtau + *n;
00496 /*     WORK(INDE:INDE+N-1) stores the off-diagonal entries of the */
00497 /*     tridiagonal matrix from DSYTRD. */
00498     inde = indd + *n;
00499 /*     WORK(INDDD:INDDD+N-1) is a copy of the diagonal entries over */
00500 /*     -written by DSTEMR (the DSTERF path copies the diagonal to W). */
00501     inddd = inde + *n;
00502 /*     WORK(INDEE:INDEE+N-1) is a copy of the off-diagonal entries over */
00503 /*     -written while computing the eigenvalues in DSTERF and DSTEMR. */
00504     indee = inddd + *n;
00505 /*     INDWK is the starting offset of the left-over workspace, and */
00506 /*     LLWORK is the remaining workspace size. */
00507     indwk = indee + *n;
00508     llwork = *lwork - indwk + 1;
00509 /*     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and */
00510 /*     stores the block indices of each of the M<=N eigenvalues. */
00511     indibl = 1;
00512 /*     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and */
00513 /*     stores the starting and finishing indices of each block. */
00514     indisp = indibl + *n;
00515 /*     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors */
00516 /*     that corresponding to eigenvectors that fail to converge in */
00517 /*     DSTEIN.  This information is discarded; if any fail, the driver */
00518 /*     returns INFO > 0. */
00519     indifl = indisp + *n;
00520 /*     INDIWO is the offset of the remaining integer workspace. */
00521     indiwo = indisp + *n;
00522 
00523 /*     Call DSYTRD to reduce symmetric matrix to tridiagonal form. */
00524 
00525     dsytrd_(uplo, n, &a[a_offset], lda, &work[indd], &work[inde], &work[
00526             indtau], &work[indwk], &llwork, &iinfo);
00527 
00528 /*     If all eigenvalues are desired */
00529 /*     then call DSTERF or DSTEMR and DORMTR. */
00530 
00531     if ((alleig || indeig && *il == 1 && *iu == *n) && ieeeok == 1) {
00532         if (! wantz) {
00533             dcopy_(n, &work[indd], &c__1, &w[1], &c__1);
00534             i__1 = *n - 1;
00535             dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
00536             dsterf_(n, &w[1], &work[indee], info);
00537         } else {
00538             i__1 = *n - 1;
00539             dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
00540             dcopy_(n, &work[indd], &c__1, &work[inddd], &c__1);
00541 
00542             if (*abstol <= *n * 2. * eps) {
00543                 tryrac = TRUE_;
00544             } else {
00545                 tryrac = FALSE_;
00546             }
00547             dstemr_(jobz, "A", n, &work[inddd], &work[indee], vl, vu, il, iu, 
00548                     m, &w[1], &z__[z_offset], ldz, n, &isuppz[1], &tryrac, &
00549                     work[indwk], lwork, &iwork[1], liwork, info);
00550 
00551 
00552 
00553 /*        Apply orthogonal matrix used in reduction to tridiagonal */
00554 /*        form to eigenvectors returned by DSTEIN. */
00555 
00556             if (wantz && *info == 0) {
00557                 indwkn = inde;
00558                 llwrkn = *lwork - indwkn + 1;
00559                 dormtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau]
00560 , &z__[z_offset], ldz, &work[indwkn], &llwrkn, &iinfo);
00561             }
00562         }
00563 
00564 
00565         if (*info == 0) {
00566 /*           Everything worked.  Skip DSTEBZ/DSTEIN.  IWORK(:) are */
00567 /*           undefined. */
00568             *m = *n;
00569             goto L30;
00570         }
00571         *info = 0;
00572     }
00573 
00574 /*     Otherwise, call DSTEBZ and, if eigenvectors are desired, DSTEIN. */
00575 /*     Also call DSTEBZ and DSTEIN if DSTEMR fails. */
00576 
00577     if (wantz) {
00578         *(unsigned char *)order = 'B';
00579     } else {
00580         *(unsigned char *)order = 'E';
00581     }
00582     dstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &work[indd], &work[
00583             inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[
00584             indwk], &iwork[indiwo], info);
00585 
00586     if (wantz) {
00587         dstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[
00588                 indisp], &z__[z_offset], ldz, &work[indwk], &iwork[indiwo], &
00589                 iwork[indifl], info);
00590 
00591 /*        Apply orthogonal matrix used in reduction to tridiagonal */
00592 /*        form to eigenvectors returned by DSTEIN. */
00593 
00594         indwkn = inde;
00595         llwrkn = *lwork - indwkn + 1;
00596         dormtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau], &z__[
00597                 z_offset], ldz, &work[indwkn], &llwrkn, &iinfo);
00598     }
00599 
00600 /*     If matrix was scaled, then rescale eigenvalues appropriately. */
00601 
00602 /*  Jump here if DSTEMR/DSTEIN succeeded. */
00603 L30:
00604     if (iscale == 1) {
00605         if (*info == 0) {
00606             imax = *m;
00607         } else {
00608             imax = *info - 1;
00609         }
00610         d__1 = 1. / sigma;
00611         dscal_(&imax, &d__1, &w[1], &c__1);
00612     }
00613 
00614 /*     If eigenvalues are not in order, then sort them, along with */
00615 /*     eigenvectors.  Note: We do not sort the IFAIL portion of IWORK. */
00616 /*     It may not be initialized (if DSTEMR/DSTEIN succeeded), and we do */
00617 /*     not return this detailed information to the user. */
00618 
00619     if (wantz) {
00620         i__1 = *m - 1;
00621         for (j = 1; j <= i__1; ++j) {
00622             i__ = 0;
00623             tmp1 = w[j];
00624             i__2 = *m;
00625             for (jj = j + 1; jj <= i__2; ++jj) {
00626                 if (w[jj] < tmp1) {
00627                     i__ = jj;
00628                     tmp1 = w[jj];
00629                 }
00630 /* L40: */
00631             }
00632 
00633             if (i__ != 0) {
00634                 w[i__] = w[j];
00635                 w[j] = tmp1;
00636                 dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], 
00637                          &c__1);
00638             }
00639 /* L50: */
00640         }
00641     }
00642 
00643 /*     Set WORK(1) to optimal workspace size. */
00644 
00645     work[1] = (doublereal) lwkopt;
00646     iwork[1] = liwmin;
00647 
00648     return 0;
00649 
00650 /*     End of DSYEVR */
00651 
00652 } /* dsyevr_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:49