00001 /* dsycon.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 00020 /* Subroutine */ int dsycon_(char *uplo, integer *n, doublereal *a, integer * 00021 lda, integer *ipiv, doublereal *anorm, doublereal *rcond, doublereal * 00022 work, integer *iwork, integer *info) 00023 { 00024 /* System generated locals */ 00025 integer a_dim1, a_offset, i__1; 00026 00027 /* Local variables */ 00028 integer i__, kase; 00029 extern logical lsame_(char *, char *); 00030 integer isave[3]; 00031 logical upper; 00032 extern /* Subroutine */ int dlacn2_(integer *, doublereal *, doublereal *, 00033 integer *, doublereal *, integer *, integer *), xerbla_(char *, 00034 integer *); 00035 doublereal ainvnm; 00036 extern /* Subroutine */ int dsytrs_(char *, integer *, integer *, 00037 doublereal *, integer *, integer *, doublereal *, integer *, 00038 integer *); 00039 00040 00041 /* -- LAPACK routine (version 3.2) -- */ 00042 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00043 /* November 2006 */ 00044 00045 /* Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH. */ 00046 00047 /* .. Scalar Arguments .. */ 00048 /* .. */ 00049 /* .. Array Arguments .. */ 00050 /* .. */ 00051 00052 /* Purpose */ 00053 /* ======= */ 00054 00055 /* DSYCON estimates the reciprocal of the condition number (in the */ 00056 /* 1-norm) of a real symmetric matrix A using the factorization */ 00057 /* A = U*D*U**T or A = L*D*L**T computed by DSYTRF. */ 00058 00059 /* An estimate is obtained for norm(inv(A)), and the reciprocal of the */ 00060 /* condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). */ 00061 00062 /* Arguments */ 00063 /* ========= */ 00064 00065 /* UPLO (input) CHARACTER*1 */ 00066 /* Specifies whether the details of the factorization are stored */ 00067 /* as an upper or lower triangular matrix. */ 00068 /* = 'U': Upper triangular, form is A = U*D*U**T; */ 00069 /* = 'L': Lower triangular, form is A = L*D*L**T. */ 00070 00071 /* N (input) INTEGER */ 00072 /* The order of the matrix A. N >= 0. */ 00073 00074 /* A (input) DOUBLE PRECISION array, dimension (LDA,N) */ 00075 /* The block diagonal matrix D and the multipliers used to */ 00076 /* obtain the factor U or L as computed by DSYTRF. */ 00077 00078 /* LDA (input) INTEGER */ 00079 /* The leading dimension of the array A. LDA >= max(1,N). */ 00080 00081 /* IPIV (input) INTEGER array, dimension (N) */ 00082 /* Details of the interchanges and the block structure of D */ 00083 /* as determined by DSYTRF. */ 00084 00085 /* ANORM (input) DOUBLE PRECISION */ 00086 /* The 1-norm of the original matrix A. */ 00087 00088 /* RCOND (output) DOUBLE PRECISION */ 00089 /* The reciprocal of the condition number of the matrix A, */ 00090 /* computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an */ 00091 /* estimate of the 1-norm of inv(A) computed in this routine. */ 00092 00093 /* WORK (workspace) DOUBLE PRECISION array, dimension (2*N) */ 00094 00095 /* IWORK (workspace) INTEGER array, dimension (N) */ 00096 00097 /* INFO (output) INTEGER */ 00098 /* = 0: successful exit */ 00099 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00100 00101 /* ===================================================================== */ 00102 00103 /* .. Parameters .. */ 00104 /* .. */ 00105 /* .. Local Scalars .. */ 00106 /* .. */ 00107 /* .. Local Arrays .. */ 00108 /* .. */ 00109 /* .. External Functions .. */ 00110 /* .. */ 00111 /* .. External Subroutines .. */ 00112 /* .. */ 00113 /* .. Intrinsic Functions .. */ 00114 /* .. */ 00115 /* .. Executable Statements .. */ 00116 00117 /* Test the input parameters. */ 00118 00119 /* Parameter adjustments */ 00120 a_dim1 = *lda; 00121 a_offset = 1 + a_dim1; 00122 a -= a_offset; 00123 --ipiv; 00124 --work; 00125 --iwork; 00126 00127 /* Function Body */ 00128 *info = 0; 00129 upper = lsame_(uplo, "U"); 00130 if (! upper && ! lsame_(uplo, "L")) { 00131 *info = -1; 00132 } else if (*n < 0) { 00133 *info = -2; 00134 } else if (*lda < max(1,*n)) { 00135 *info = -4; 00136 } else if (*anorm < 0.) { 00137 *info = -6; 00138 } 00139 if (*info != 0) { 00140 i__1 = -(*info); 00141 xerbla_("DSYCON", &i__1); 00142 return 0; 00143 } 00144 00145 /* Quick return if possible */ 00146 00147 *rcond = 0.; 00148 if (*n == 0) { 00149 *rcond = 1.; 00150 return 0; 00151 } else if (*anorm <= 0.) { 00152 return 0; 00153 } 00154 00155 /* Check that the diagonal matrix D is nonsingular. */ 00156 00157 if (upper) { 00158 00159 /* Upper triangular storage: examine D from bottom to top */ 00160 00161 for (i__ = *n; i__ >= 1; --i__) { 00162 if (ipiv[i__] > 0 && a[i__ + i__ * a_dim1] == 0.) { 00163 return 0; 00164 } 00165 /* L10: */ 00166 } 00167 } else { 00168 00169 /* Lower triangular storage: examine D from top to bottom. */ 00170 00171 i__1 = *n; 00172 for (i__ = 1; i__ <= i__1; ++i__) { 00173 if (ipiv[i__] > 0 && a[i__ + i__ * a_dim1] == 0.) { 00174 return 0; 00175 } 00176 /* L20: */ 00177 } 00178 } 00179 00180 /* Estimate the 1-norm of the inverse. */ 00181 00182 kase = 0; 00183 L30: 00184 dlacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave); 00185 if (kase != 0) { 00186 00187 /* Multiply by inv(L*D*L') or inv(U*D*U'). */ 00188 00189 dsytrs_(uplo, n, &c__1, &a[a_offset], lda, &ipiv[1], &work[1], n, 00190 info); 00191 goto L30; 00192 } 00193 00194 /* Compute the estimate of the reciprocal condition number. */ 00195 00196 if (ainvnm != 0.) { 00197 *rcond = 1. / ainvnm / *anorm; 00198 } 00199 00200 return 0; 00201 00202 /* End of DSYCON */ 00203 00204 } /* dsycon_ */