00001 /* dstevr.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__10 = 10; 00019 static integer c__1 = 1; 00020 static integer c__2 = 2; 00021 static integer c__3 = 3; 00022 static integer c__4 = 4; 00023 00024 /* Subroutine */ int dstevr_(char *jobz, char *range, integer *n, doublereal * 00025 d__, doublereal *e, doublereal *vl, doublereal *vu, integer *il, 00026 integer *iu, doublereal *abstol, integer *m, doublereal *w, 00027 doublereal *z__, integer *ldz, integer *isuppz, doublereal *work, 00028 integer *lwork, integer *iwork, integer *liwork, integer *info) 00029 { 00030 /* System generated locals */ 00031 integer z_dim1, z_offset, i__1, i__2; 00032 doublereal d__1, d__2; 00033 00034 /* Builtin functions */ 00035 double sqrt(doublereal); 00036 00037 /* Local variables */ 00038 integer i__, j, jj; 00039 doublereal eps, vll, vuu, tmp1; 00040 integer imax; 00041 doublereal rmin, rmax; 00042 logical test; 00043 doublereal tnrm; 00044 integer itmp1; 00045 extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 00046 integer *); 00047 doublereal sigma; 00048 extern logical lsame_(char *, char *); 00049 char order[1]; 00050 extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 00051 doublereal *, integer *), dswap_(integer *, doublereal *, integer 00052 *, doublereal *, integer *); 00053 integer lwmin; 00054 logical wantz; 00055 extern doublereal dlamch_(char *); 00056 logical alleig, indeig; 00057 integer iscale, ieeeok, indibl, indifl; 00058 logical valeig; 00059 doublereal safmin; 00060 extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 00061 integer *, integer *); 00062 extern /* Subroutine */ int xerbla_(char *, integer *); 00063 doublereal bignum; 00064 extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *); 00065 integer indisp; 00066 extern /* Subroutine */ int dstein_(integer *, doublereal *, doublereal *, 00067 integer *, doublereal *, integer *, integer *, doublereal *, 00068 integer *, doublereal *, integer *, integer *, integer *), 00069 dsterf_(integer *, doublereal *, doublereal *, integer *); 00070 integer indiwo; 00071 extern /* Subroutine */ int dstebz_(char *, char *, integer *, doublereal 00072 *, doublereal *, integer *, integer *, doublereal *, doublereal *, 00073 doublereal *, integer *, integer *, doublereal *, integer *, 00074 integer *, doublereal *, integer *, integer *), 00075 dstemr_(char *, char *, integer *, doublereal *, doublereal *, 00076 doublereal *, doublereal *, integer *, integer *, integer *, 00077 doublereal *, doublereal *, integer *, integer *, integer *, 00078 logical *, doublereal *, integer *, integer *, integer *, integer 00079 *); 00080 integer liwmin; 00081 logical tryrac; 00082 integer nsplit; 00083 doublereal smlnum; 00084 logical lquery; 00085 00086 00087 /* -- LAPACK driver routine (version 3.2) -- */ 00088 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00089 /* November 2006 */ 00090 00091 /* .. Scalar Arguments .. */ 00092 /* .. */ 00093 /* .. Array Arguments .. */ 00094 /* .. */ 00095 00096 /* Purpose */ 00097 /* ======= */ 00098 00099 /* DSTEVR computes selected eigenvalues and, optionally, eigenvectors */ 00100 /* of a real symmetric tridiagonal matrix T. Eigenvalues and */ 00101 /* eigenvectors can be selected by specifying either a range of values */ 00102 /* or a range of indices for the desired eigenvalues. */ 00103 00104 /* Whenever possible, DSTEVR calls DSTEMR to compute the */ 00105 /* eigenspectrum using Relatively Robust Representations. DSTEMR */ 00106 /* computes eigenvalues by the dqds algorithm, while orthogonal */ 00107 /* eigenvectors are computed from various "good" L D L^T representations */ 00108 /* (also known as Relatively Robust Representations). Gram-Schmidt */ 00109 /* orthogonalization is avoided as far as possible. More specifically, */ 00110 /* the various steps of the algorithm are as follows. For the i-th */ 00111 /* unreduced block of T, */ 00112 /* (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T */ 00113 /* is a relatively robust representation, */ 00114 /* (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high */ 00115 /* relative accuracy by the dqds algorithm, */ 00116 /* (c) If there is a cluster of close eigenvalues, "choose" sigma_i */ 00117 /* close to the cluster, and go to step (a), */ 00118 /* (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T, */ 00119 /* compute the corresponding eigenvector by forming a */ 00120 /* rank-revealing twisted factorization. */ 00121 /* The desired accuracy of the output can be specified by the input */ 00122 /* parameter ABSTOL. */ 00123 00124 /* For more details, see "A new O(n^2) algorithm for the symmetric */ 00125 /* tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon, */ 00126 /* Computer Science Division Technical Report No. UCB//CSD-97-971, */ 00127 /* UC Berkeley, May 1997. */ 00128 00129 00130 /* Note 1 : DSTEVR calls DSTEMR when the full spectrum is requested */ 00131 /* on machines which conform to the ieee-754 floating point standard. */ 00132 /* DSTEVR calls DSTEBZ and DSTEIN on non-ieee machines and */ 00133 /* when partial spectrum requests are made. */ 00134 00135 /* Normal execution of DSTEMR may create NaNs and infinities and */ 00136 /* hence may abort due to a floating point exception in environments */ 00137 /* which do not handle NaNs and infinities in the ieee standard default */ 00138 /* manner. */ 00139 00140 /* Arguments */ 00141 /* ========= */ 00142 00143 /* JOBZ (input) CHARACTER*1 */ 00144 /* = 'N': Compute eigenvalues only; */ 00145 /* = 'V': Compute eigenvalues and eigenvectors. */ 00146 00147 /* RANGE (input) CHARACTER*1 */ 00148 /* = 'A': all eigenvalues will be found. */ 00149 /* = 'V': all eigenvalues in the half-open interval (VL,VU] */ 00150 /* will be found. */ 00151 /* = 'I': the IL-th through IU-th eigenvalues will be found. */ 00152 /* ********* For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and */ 00153 /* ********* DSTEIN are called */ 00154 00155 /* N (input) INTEGER */ 00156 /* The order of the matrix. N >= 0. */ 00157 00158 /* D (input/output) DOUBLE PRECISION array, dimension (N) */ 00159 /* On entry, the n diagonal elements of the tridiagonal matrix */ 00160 /* A. */ 00161 /* On exit, D may be multiplied by a constant factor chosen */ 00162 /* to avoid over/underflow in computing the eigenvalues. */ 00163 00164 /* E (input/output) DOUBLE PRECISION array, dimension (max(1,N-1)) */ 00165 /* On entry, the (n-1) subdiagonal elements of the tridiagonal */ 00166 /* matrix A in elements 1 to N-1 of E. */ 00167 /* On exit, E may be multiplied by a constant factor chosen */ 00168 /* to avoid over/underflow in computing the eigenvalues. */ 00169 00170 /* VL (input) DOUBLE PRECISION */ 00171 /* VU (input) DOUBLE PRECISION */ 00172 /* If RANGE='V', the lower and upper bounds of the interval to */ 00173 /* be searched for eigenvalues. VL < VU. */ 00174 /* Not referenced if RANGE = 'A' or 'I'. */ 00175 00176 /* IL (input) INTEGER */ 00177 /* IU (input) INTEGER */ 00178 /* If RANGE='I', the indices (in ascending order) of the */ 00179 /* smallest and largest eigenvalues to be returned. */ 00180 /* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */ 00181 /* Not referenced if RANGE = 'A' or 'V'. */ 00182 00183 /* ABSTOL (input) DOUBLE PRECISION */ 00184 /* The absolute error tolerance for the eigenvalues. */ 00185 /* An approximate eigenvalue is accepted as converged */ 00186 /* when it is determined to lie in an interval [a,b] */ 00187 /* of width less than or equal to */ 00188 00189 /* ABSTOL + EPS * max( |a|,|b| ) , */ 00190 00191 /* where EPS is the machine precision. If ABSTOL is less than */ 00192 /* or equal to zero, then EPS*|T| will be used in its place, */ 00193 /* where |T| is the 1-norm of the tridiagonal matrix obtained */ 00194 /* by reducing A to tridiagonal form. */ 00195 00196 /* See "Computing Small Singular Values of Bidiagonal Matrices */ 00197 /* with Guaranteed High Relative Accuracy," by Demmel and */ 00198 /* Kahan, LAPACK Working Note #3. */ 00199 00200 /* If high relative accuracy is important, set ABSTOL to */ 00201 /* DLAMCH( 'Safe minimum' ). Doing so will guarantee that */ 00202 /* eigenvalues are computed to high relative accuracy when */ 00203 /* possible in future releases. The current code does not */ 00204 /* make any guarantees about high relative accuracy, but */ 00205 /* future releases will. See J. Barlow and J. Demmel, */ 00206 /* "Computing Accurate Eigensystems of Scaled Diagonally */ 00207 /* Dominant Matrices", LAPACK Working Note #7, for a discussion */ 00208 /* of which matrices define their eigenvalues to high relative */ 00209 /* accuracy. */ 00210 00211 /* M (output) INTEGER */ 00212 /* The total number of eigenvalues found. 0 <= M <= N. */ 00213 /* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */ 00214 00215 /* W (output) DOUBLE PRECISION array, dimension (N) */ 00216 /* The first M elements contain the selected eigenvalues in */ 00217 /* ascending order. */ 00218 00219 /* Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) ) */ 00220 /* If JOBZ = 'V', then if INFO = 0, the first M columns of Z */ 00221 /* contain the orthonormal eigenvectors of the matrix A */ 00222 /* corresponding to the selected eigenvalues, with the i-th */ 00223 /* column of Z holding the eigenvector associated with W(i). */ 00224 /* Note: the user must ensure that at least max(1,M) columns are */ 00225 /* supplied in the array Z; if RANGE = 'V', the exact value of M */ 00226 /* is not known in advance and an upper bound must be used. */ 00227 00228 /* LDZ (input) INTEGER */ 00229 /* The leading dimension of the array Z. LDZ >= 1, and if */ 00230 /* JOBZ = 'V', LDZ >= max(1,N). */ 00231 00232 /* ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) ) */ 00233 /* The support of the eigenvectors in Z, i.e., the indices */ 00234 /* indicating the nonzero elements in Z. The i-th eigenvector */ 00235 /* is nonzero only in elements ISUPPZ( 2*i-1 ) through */ 00236 /* ISUPPZ( 2*i ). */ 00237 /* ********* Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1 */ 00238 00239 /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */ 00240 /* On exit, if INFO = 0, WORK(1) returns the optimal (and */ 00241 /* minimal) LWORK. */ 00242 00243 /* LWORK (input) INTEGER */ 00244 /* The dimension of the array WORK. LWORK >= max(1,20*N). */ 00245 00246 /* If LWORK = -1, then a workspace query is assumed; the routine */ 00247 /* only calculates the optimal sizes of the WORK and IWORK */ 00248 /* arrays, returns these values as the first entries of the WORK */ 00249 /* and IWORK arrays, and no error message related to LWORK or */ 00250 /* LIWORK is issued by XERBLA. */ 00251 00252 /* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */ 00253 /* On exit, if INFO = 0, IWORK(1) returns the optimal (and */ 00254 /* minimal) LIWORK. */ 00255 00256 /* LIWORK (input) INTEGER */ 00257 /* The dimension of the array IWORK. LIWORK >= max(1,10*N). */ 00258 00259 /* If LIWORK = -1, then a workspace query is assumed; the */ 00260 /* routine only calculates the optimal sizes of the WORK and */ 00261 /* IWORK arrays, returns these values as the first entries of */ 00262 /* the WORK and IWORK arrays, and no error message related to */ 00263 /* LWORK or LIWORK is issued by XERBLA. */ 00264 00265 /* INFO (output) INTEGER */ 00266 /* = 0: successful exit */ 00267 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00268 /* > 0: Internal error */ 00269 00270 /* Further Details */ 00271 /* =============== */ 00272 00273 /* Based on contributions by */ 00274 /* Inderjit Dhillon, IBM Almaden, USA */ 00275 /* Osni Marques, LBNL/NERSC, USA */ 00276 /* Ken Stanley, Computer Science Division, University of */ 00277 /* California at Berkeley, USA */ 00278 00279 /* ===================================================================== */ 00280 00281 /* .. Parameters .. */ 00282 /* .. */ 00283 /* .. Local Scalars .. */ 00284 /* .. */ 00285 /* .. External Functions .. */ 00286 /* .. */ 00287 /* .. External Subroutines .. */ 00288 /* .. */ 00289 /* .. Intrinsic Functions .. */ 00290 /* .. */ 00291 /* .. Executable Statements .. */ 00292 00293 00294 /* Test the input parameters. */ 00295 00296 /* Parameter adjustments */ 00297 --d__; 00298 --e; 00299 --w; 00300 z_dim1 = *ldz; 00301 z_offset = 1 + z_dim1; 00302 z__ -= z_offset; 00303 --isuppz; 00304 --work; 00305 --iwork; 00306 00307 /* Function Body */ 00308 ieeeok = ilaenv_(&c__10, "DSTEVR", "N", &c__1, &c__2, &c__3, &c__4); 00309 00310 wantz = lsame_(jobz, "V"); 00311 alleig = lsame_(range, "A"); 00312 valeig = lsame_(range, "V"); 00313 indeig = lsame_(range, "I"); 00314 00315 lquery = *lwork == -1 || *liwork == -1; 00316 /* Computing MAX */ 00317 i__1 = 1, i__2 = *n * 20; 00318 lwmin = max(i__1,i__2); 00319 /* Computing MAX */ 00320 i__1 = 1, i__2 = *n * 10; 00321 liwmin = max(i__1,i__2); 00322 00323 00324 *info = 0; 00325 if (! (wantz || lsame_(jobz, "N"))) { 00326 *info = -1; 00327 } else if (! (alleig || valeig || indeig)) { 00328 *info = -2; 00329 } else if (*n < 0) { 00330 *info = -3; 00331 } else { 00332 if (valeig) { 00333 if (*n > 0 && *vu <= *vl) { 00334 *info = -7; 00335 } 00336 } else if (indeig) { 00337 if (*il < 1 || *il > max(1,*n)) { 00338 *info = -8; 00339 } else if (*iu < min(*n,*il) || *iu > *n) { 00340 *info = -9; 00341 } 00342 } 00343 } 00344 if (*info == 0) { 00345 if (*ldz < 1 || wantz && *ldz < *n) { 00346 *info = -14; 00347 } 00348 } 00349 00350 if (*info == 0) { 00351 work[1] = (doublereal) lwmin; 00352 iwork[1] = liwmin; 00353 00354 if (*lwork < lwmin && ! lquery) { 00355 *info = -17; 00356 } else if (*liwork < liwmin && ! lquery) { 00357 *info = -19; 00358 } 00359 } 00360 00361 if (*info != 0) { 00362 i__1 = -(*info); 00363 xerbla_("DSTEVR", &i__1); 00364 return 0; 00365 } else if (lquery) { 00366 return 0; 00367 } 00368 00369 /* Quick return if possible */ 00370 00371 *m = 0; 00372 if (*n == 0) { 00373 return 0; 00374 } 00375 00376 if (*n == 1) { 00377 if (alleig || indeig) { 00378 *m = 1; 00379 w[1] = d__[1]; 00380 } else { 00381 if (*vl < d__[1] && *vu >= d__[1]) { 00382 *m = 1; 00383 w[1] = d__[1]; 00384 } 00385 } 00386 if (wantz) { 00387 z__[z_dim1 + 1] = 1.; 00388 } 00389 return 0; 00390 } 00391 00392 /* Get machine constants. */ 00393 00394 safmin = dlamch_("Safe minimum"); 00395 eps = dlamch_("Precision"); 00396 smlnum = safmin / eps; 00397 bignum = 1. / smlnum; 00398 rmin = sqrt(smlnum); 00399 /* Computing MIN */ 00400 d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin)); 00401 rmax = min(d__1,d__2); 00402 00403 00404 /* Scale matrix to allowable range, if necessary. */ 00405 00406 iscale = 0; 00407 vll = *vl; 00408 vuu = *vu; 00409 00410 tnrm = dlanst_("M", n, &d__[1], &e[1]); 00411 if (tnrm > 0. && tnrm < rmin) { 00412 iscale = 1; 00413 sigma = rmin / tnrm; 00414 } else if (tnrm > rmax) { 00415 iscale = 1; 00416 sigma = rmax / tnrm; 00417 } 00418 if (iscale == 1) { 00419 dscal_(n, &sigma, &d__[1], &c__1); 00420 i__1 = *n - 1; 00421 dscal_(&i__1, &sigma, &e[1], &c__1); 00422 if (valeig) { 00423 vll = *vl * sigma; 00424 vuu = *vu * sigma; 00425 } 00426 } 00427 /* Initialize indices into workspaces. Note: These indices are used only */ 00428 /* if DSTERF or DSTEMR fail. */ 00429 /* IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and */ 00430 /* stores the block indices of each of the M<=N eigenvalues. */ 00431 indibl = 1; 00432 /* IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and */ 00433 /* stores the starting and finishing indices of each block. */ 00434 indisp = indibl + *n; 00435 /* IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors */ 00436 /* that corresponding to eigenvectors that fail to converge in */ 00437 /* DSTEIN. This information is discarded; if any fail, the driver */ 00438 /* returns INFO > 0. */ 00439 indifl = indisp + *n; 00440 /* INDIWO is the offset of the remaining integer workspace. */ 00441 indiwo = indisp + *n; 00442 00443 /* If all eigenvalues are desired, then */ 00444 /* call DSTERF or DSTEMR. If this fails for some eigenvalue, then */ 00445 /* try DSTEBZ. */ 00446 00447 00448 test = FALSE_; 00449 if (indeig) { 00450 if (*il == 1 && *iu == *n) { 00451 test = TRUE_; 00452 } 00453 } 00454 if ((alleig || test) && ieeeok == 1) { 00455 i__1 = *n - 1; 00456 dcopy_(&i__1, &e[1], &c__1, &work[1], &c__1); 00457 if (! wantz) { 00458 dcopy_(n, &d__[1], &c__1, &w[1], &c__1); 00459 dsterf_(n, &w[1], &work[1], info); 00460 } else { 00461 dcopy_(n, &d__[1], &c__1, &work[*n + 1], &c__1); 00462 if (*abstol <= *n * 2. * eps) { 00463 tryrac = TRUE_; 00464 } else { 00465 tryrac = FALSE_; 00466 } 00467 i__1 = *lwork - (*n << 1); 00468 dstemr_(jobz, "A", n, &work[*n + 1], &work[1], vl, vu, il, iu, m, 00469 &w[1], &z__[z_offset], ldz, n, &isuppz[1], &tryrac, &work[ 00470 (*n << 1) + 1], &i__1, &iwork[1], liwork, info); 00471 00472 } 00473 if (*info == 0) { 00474 *m = *n; 00475 goto L10; 00476 } 00477 *info = 0; 00478 } 00479 00480 /* Otherwise, call DSTEBZ and, if eigenvectors are desired, DSTEIN. */ 00481 00482 if (wantz) { 00483 *(unsigned char *)order = 'B'; 00484 } else { 00485 *(unsigned char *)order = 'E'; 00486 } 00487 dstebz_(range, order, n, &vll, &vuu, il, iu, abstol, &d__[1], &e[1], m, & 00488 nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[1], &iwork[ 00489 indiwo], info); 00490 00491 if (wantz) { 00492 dstein_(n, &d__[1], &e[1], m, &w[1], &iwork[indibl], &iwork[indisp], & 00493 z__[z_offset], ldz, &work[1], &iwork[indiwo], &iwork[indifl], 00494 info); 00495 } 00496 00497 /* If matrix was scaled, then rescale eigenvalues appropriately. */ 00498 00499 L10: 00500 if (iscale == 1) { 00501 if (*info == 0) { 00502 imax = *m; 00503 } else { 00504 imax = *info - 1; 00505 } 00506 d__1 = 1. / sigma; 00507 dscal_(&imax, &d__1, &w[1], &c__1); 00508 } 00509 00510 /* If eigenvalues are not in order, then sort them, along with */ 00511 /* eigenvectors. */ 00512 00513 if (wantz) { 00514 i__1 = *m - 1; 00515 for (j = 1; j <= i__1; ++j) { 00516 i__ = 0; 00517 tmp1 = w[j]; 00518 i__2 = *m; 00519 for (jj = j + 1; jj <= i__2; ++jj) { 00520 if (w[jj] < tmp1) { 00521 i__ = jj; 00522 tmp1 = w[jj]; 00523 } 00524 /* L20: */ 00525 } 00526 00527 if (i__ != 0) { 00528 itmp1 = iwork[i__]; 00529 w[i__] = w[j]; 00530 iwork[i__] = iwork[j]; 00531 w[j] = tmp1; 00532 iwork[j] = itmp1; 00533 dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], 00534 &c__1); 00535 } 00536 /* L30: */ 00537 } 00538 } 00539 00540 /* Causes problems with tests 19 & 20: */ 00541 /* IF (wantz .and. INDEIG ) Z( 1,1) = Z(1,1) / 1.002 + .002 */ 00542 00543 00544 work[1] = (doublereal) lwmin; 00545 iwork[1] = liwmin; 00546 return 0; 00547 00548 /* End of DSTEVR */ 00549 00550 } /* dstevr_ */