dstevd.c
Go to the documentation of this file.
00001 /* dstevd.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 
00020 /* Subroutine */ int dstevd_(char *jobz, integer *n, doublereal *d__, 
00021         doublereal *e, doublereal *z__, integer *ldz, doublereal *work, 
00022         integer *lwork, integer *iwork, integer *liwork, integer *info)
00023 {
00024     /* System generated locals */
00025     integer z_dim1, z_offset, i__1;
00026     doublereal d__1;
00027 
00028     /* Builtin functions */
00029     double sqrt(doublereal);
00030 
00031     /* Local variables */
00032     doublereal eps, rmin, rmax, tnrm;
00033     extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
00034             integer *);
00035     doublereal sigma;
00036     extern logical lsame_(char *, char *);
00037     integer lwmin;
00038     logical wantz;
00039     extern doublereal dlamch_(char *);
00040     integer iscale;
00041     extern /* Subroutine */ int dstedc_(char *, integer *, doublereal *, 
00042             doublereal *, doublereal *, integer *, doublereal *, integer *, 
00043             integer *, integer *, integer *);
00044     doublereal safmin;
00045     extern /* Subroutine */ int xerbla_(char *, integer *);
00046     doublereal bignum;
00047     extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
00048     extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *, 
00049              integer *);
00050     integer liwmin;
00051     doublereal smlnum;
00052     logical lquery;
00053 
00054 
00055 /*  -- LAPACK driver routine (version 3.2) -- */
00056 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00057 /*     November 2006 */
00058 
00059 /*     .. Scalar Arguments .. */
00060 /*     .. */
00061 /*     .. Array Arguments .. */
00062 /*     .. */
00063 
00064 /*  Purpose */
00065 /*  ======= */
00066 
00067 /*  DSTEVD computes all eigenvalues and, optionally, eigenvectors of a */
00068 /*  real symmetric tridiagonal matrix. If eigenvectors are desired, it */
00069 /*  uses a divide and conquer algorithm. */
00070 
00071 /*  The divide and conquer algorithm makes very mild assumptions about */
00072 /*  floating point arithmetic. It will work on machines with a guard */
00073 /*  digit in add/subtract, or on those binary machines without guard */
00074 /*  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
00075 /*  Cray-2. It could conceivably fail on hexadecimal or decimal machines */
00076 /*  without guard digits, but we know of none. */
00077 
00078 /*  Arguments */
00079 /*  ========= */
00080 
00081 /*  JOBZ    (input) CHARACTER*1 */
00082 /*          = 'N':  Compute eigenvalues only; */
00083 /*          = 'V':  Compute eigenvalues and eigenvectors. */
00084 
00085 /*  N       (input) INTEGER */
00086 /*          The order of the matrix.  N >= 0. */
00087 
00088 /*  D       (input/output) DOUBLE PRECISION array, dimension (N) */
00089 /*          On entry, the n diagonal elements of the tridiagonal matrix */
00090 /*          A. */
00091 /*          On exit, if INFO = 0, the eigenvalues in ascending order. */
00092 
00093 /*  E       (input/output) DOUBLE PRECISION array, dimension (N-1) */
00094 /*          On entry, the (n-1) subdiagonal elements of the tridiagonal */
00095 /*          matrix A, stored in elements 1 to N-1 of E. */
00096 /*          On exit, the contents of E are destroyed. */
00097 
00098 /*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N) */
00099 /*          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */
00100 /*          eigenvectors of the matrix A, with the i-th column of Z */
00101 /*          holding the eigenvector associated with D(i). */
00102 /*          If JOBZ = 'N', then Z is not referenced. */
00103 
00104 /*  LDZ     (input) INTEGER */
00105 /*          The leading dimension of the array Z.  LDZ >= 1, and if */
00106 /*          JOBZ = 'V', LDZ >= max(1,N). */
00107 
00108 /*  WORK    (workspace/output) DOUBLE PRECISION array, */
00109 /*                                         dimension (LWORK) */
00110 /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
00111 
00112 /*  LWORK   (input) INTEGER */
00113 /*          The dimension of the array WORK. */
00114 /*          If JOBZ  = 'N' or N <= 1 then LWORK must be at least 1. */
00115 /*          If JOBZ  = 'V' and N > 1 then LWORK must be at least */
00116 /*                         ( 1 + 4*N + N**2 ). */
00117 
00118 /*          If LWORK = -1, then a workspace query is assumed; the routine */
00119 /*          only calculates the optimal sizes of the WORK and IWORK */
00120 /*          arrays, returns these values as the first entries of the WORK */
00121 /*          and IWORK arrays, and no error message related to LWORK or */
00122 /*          LIWORK is issued by XERBLA. */
00123 
00124 /*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
00125 /*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
00126 
00127 /*  LIWORK  (input) INTEGER */
00128 /*          The dimension of the array IWORK. */
00129 /*          If JOBZ  = 'N' or N <= 1 then LIWORK must be at least 1. */
00130 /*          If JOBZ  = 'V' and N > 1 then LIWORK must be at least 3+5*N. */
00131 
00132 /*          If LIWORK = -1, then a workspace query is assumed; the */
00133 /*          routine only calculates the optimal sizes of the WORK and */
00134 /*          IWORK arrays, returns these values as the first entries of */
00135 /*          the WORK and IWORK arrays, and no error message related to */
00136 /*          LWORK or LIWORK is issued by XERBLA. */
00137 
00138 /*  INFO    (output) INTEGER */
00139 /*          = 0:  successful exit */
00140 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00141 /*          > 0:  if INFO = i, the algorithm failed to converge; i */
00142 /*                off-diagonal elements of E did not converge to zero. */
00143 
00144 /*  ===================================================================== */
00145 
00146 /*     .. Parameters .. */
00147 /*     .. */
00148 /*     .. Local Scalars .. */
00149 /*     .. */
00150 /*     .. External Functions .. */
00151 /*     .. */
00152 /*     .. External Subroutines .. */
00153 /*     .. */
00154 /*     .. Intrinsic Functions .. */
00155 /*     .. */
00156 /*     .. Executable Statements .. */
00157 
00158 /*     Test the input parameters. */
00159 
00160     /* Parameter adjustments */
00161     --d__;
00162     --e;
00163     z_dim1 = *ldz;
00164     z_offset = 1 + z_dim1;
00165     z__ -= z_offset;
00166     --work;
00167     --iwork;
00168 
00169     /* Function Body */
00170     wantz = lsame_(jobz, "V");
00171     lquery = *lwork == -1 || *liwork == -1;
00172 
00173     *info = 0;
00174     liwmin = 1;
00175     lwmin = 1;
00176     if (*n > 1 && wantz) {
00177 /* Computing 2nd power */
00178         i__1 = *n;
00179         lwmin = (*n << 2) + 1 + i__1 * i__1;
00180         liwmin = *n * 5 + 3;
00181     }
00182 
00183     if (! (wantz || lsame_(jobz, "N"))) {
00184         *info = -1;
00185     } else if (*n < 0) {
00186         *info = -2;
00187     } else if (*ldz < 1 || wantz && *ldz < *n) {
00188         *info = -6;
00189     }
00190 
00191     if (*info == 0) {
00192         work[1] = (doublereal) lwmin;
00193         iwork[1] = liwmin;
00194 
00195         if (*lwork < lwmin && ! lquery) {
00196             *info = -8;
00197         } else if (*liwork < liwmin && ! lquery) {
00198             *info = -10;
00199         }
00200     }
00201 
00202     if (*info != 0) {
00203         i__1 = -(*info);
00204         xerbla_("DSTEVD", &i__1);
00205         return 0;
00206     } else if (lquery) {
00207         return 0;
00208     }
00209 
00210 /*     Quick return if possible */
00211 
00212     if (*n == 0) {
00213         return 0;
00214     }
00215 
00216     if (*n == 1) {
00217         if (wantz) {
00218             z__[z_dim1 + 1] = 1.;
00219         }
00220         return 0;
00221     }
00222 
00223 /*     Get machine constants. */
00224 
00225     safmin = dlamch_("Safe minimum");
00226     eps = dlamch_("Precision");
00227     smlnum = safmin / eps;
00228     bignum = 1. / smlnum;
00229     rmin = sqrt(smlnum);
00230     rmax = sqrt(bignum);
00231 
00232 /*     Scale matrix to allowable range, if necessary. */
00233 
00234     iscale = 0;
00235     tnrm = dlanst_("M", n, &d__[1], &e[1]);
00236     if (tnrm > 0. && tnrm < rmin) {
00237         iscale = 1;
00238         sigma = rmin / tnrm;
00239     } else if (tnrm > rmax) {
00240         iscale = 1;
00241         sigma = rmax / tnrm;
00242     }
00243     if (iscale == 1) {
00244         dscal_(n, &sigma, &d__[1], &c__1);
00245         i__1 = *n - 1;
00246         dscal_(&i__1, &sigma, &e[1], &c__1);
00247     }
00248 
00249 /*     For eigenvalues only, call DSTERF.  For eigenvalues and */
00250 /*     eigenvectors, call DSTEDC. */
00251 
00252     if (! wantz) {
00253         dsterf_(n, &d__[1], &e[1], info);
00254     } else {
00255         dstedc_("I", n, &d__[1], &e[1], &z__[z_offset], ldz, &work[1], lwork, 
00256                 &iwork[1], liwork, info);
00257     }
00258 
00259 /*     If matrix was scaled, then rescale eigenvalues appropriately. */
00260 
00261     if (iscale == 1) {
00262         d__1 = 1. / sigma;
00263         dscal_(n, &d__1, &d__[1], &c__1);
00264     }
00265 
00266     work[1] = (doublereal) lwmin;
00267     iwork[1] = liwmin;
00268 
00269     return 0;
00270 
00271 /*     End of DSTEVD */
00272 
00273 } /* dstevd_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:49