dsptrd.c
Go to the documentation of this file.
00001 /* dsptrd.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 static doublereal c_b8 = 0.;
00020 static doublereal c_b14 = -1.;
00021 
00022 /* Subroutine */ int dsptrd_(char *uplo, integer *n, doublereal *ap, 
00023         doublereal *d__, doublereal *e, doublereal *tau, integer *info)
00024 {
00025     /* System generated locals */
00026     integer i__1, i__2;
00027 
00028     /* Local variables */
00029     integer i__, i1, ii, i1i1;
00030     extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, 
00031             integer *);
00032     doublereal taui;
00033     extern /* Subroutine */ int dspr2_(char *, integer *, doublereal *, 
00034             doublereal *, integer *, doublereal *, integer *, doublereal *);
00035     doublereal alpha;
00036     extern logical lsame_(char *, char *);
00037     extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *, 
00038             integer *, doublereal *, integer *), dspmv_(char *, integer *, 
00039             doublereal *, doublereal *, doublereal *, integer *, doublereal *, 
00040              doublereal *, integer *);
00041     logical upper;
00042     extern /* Subroutine */ int dlarfg_(integer *, doublereal *, doublereal *, 
00043              integer *, doublereal *), xerbla_(char *, integer *);
00044 
00045 
00046 /*  -- LAPACK routine (version 3.2) -- */
00047 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00048 /*     November 2006 */
00049 
00050 /*     .. Scalar Arguments .. */
00051 /*     .. */
00052 /*     .. Array Arguments .. */
00053 /*     .. */
00054 
00055 /*  Purpose */
00056 /*  ======= */
00057 
00058 /*  DSPTRD reduces a real symmetric matrix A stored in packed form to */
00059 /*  symmetric tridiagonal form T by an orthogonal similarity */
00060 /*  transformation: Q**T * A * Q = T. */
00061 
00062 /*  Arguments */
00063 /*  ========= */
00064 
00065 /*  UPLO    (input) CHARACTER*1 */
00066 /*          = 'U':  Upper triangle of A is stored; */
00067 /*          = 'L':  Lower triangle of A is stored. */
00068 
00069 /*  N       (input) INTEGER */
00070 /*          The order of the matrix A.  N >= 0. */
00071 
00072 /*  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
00073 /*          On entry, the upper or lower triangle of the symmetric matrix */
00074 /*          A, packed columnwise in a linear array.  The j-th column of A */
00075 /*          is stored in the array AP as follows: */
00076 /*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
00077 /*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */
00078 /*          On exit, if UPLO = 'U', the diagonal and first superdiagonal */
00079 /*          of A are overwritten by the corresponding elements of the */
00080 /*          tridiagonal matrix T, and the elements above the first */
00081 /*          superdiagonal, with the array TAU, represent the orthogonal */
00082 /*          matrix Q as a product of elementary reflectors; if UPLO */
00083 /*          = 'L', the diagonal and first subdiagonal of A are over- */
00084 /*          written by the corresponding elements of the tridiagonal */
00085 /*          matrix T, and the elements below the first subdiagonal, with */
00086 /*          the array TAU, represent the orthogonal matrix Q as a product */
00087 /*          of elementary reflectors. See Further Details. */
00088 
00089 /*  D       (output) DOUBLE PRECISION array, dimension (N) */
00090 /*          The diagonal elements of the tridiagonal matrix T: */
00091 /*          D(i) = A(i,i). */
00092 
00093 /*  E       (output) DOUBLE PRECISION array, dimension (N-1) */
00094 /*          The off-diagonal elements of the tridiagonal matrix T: */
00095 /*          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. */
00096 
00097 /*  TAU     (output) DOUBLE PRECISION array, dimension (N-1) */
00098 /*          The scalar factors of the elementary reflectors (see Further */
00099 /*          Details). */
00100 
00101 /*  INFO    (output) INTEGER */
00102 /*          = 0:  successful exit */
00103 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00104 
00105 /*  Further Details */
00106 /*  =============== */
00107 
00108 /*  If UPLO = 'U', the matrix Q is represented as a product of elementary */
00109 /*  reflectors */
00110 
00111 /*     Q = H(n-1) . . . H(2) H(1). */
00112 
00113 /*  Each H(i) has the form */
00114 
00115 /*     H(i) = I - tau * v * v' */
00116 
00117 /*  where tau is a real scalar, and v is a real vector with */
00118 /*  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP, */
00119 /*  overwriting A(1:i-1,i+1), and tau is stored in TAU(i). */
00120 
00121 /*  If UPLO = 'L', the matrix Q is represented as a product of elementary */
00122 /*  reflectors */
00123 
00124 /*     Q = H(1) H(2) . . . H(n-1). */
00125 
00126 /*  Each H(i) has the form */
00127 
00128 /*     H(i) = I - tau * v * v' */
00129 
00130 /*  where tau is a real scalar, and v is a real vector with */
00131 /*  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP, */
00132 /*  overwriting A(i+2:n,i), and tau is stored in TAU(i). */
00133 
00134 /*  ===================================================================== */
00135 
00136 /*     .. Parameters .. */
00137 /*     .. */
00138 /*     .. Local Scalars .. */
00139 /*     .. */
00140 /*     .. External Subroutines .. */
00141 /*     .. */
00142 /*     .. External Functions .. */
00143 /*     .. */
00144 /*     .. Executable Statements .. */
00145 
00146 /*     Test the input parameters */
00147 
00148     /* Parameter adjustments */
00149     --tau;
00150     --e;
00151     --d__;
00152     --ap;
00153 
00154     /* Function Body */
00155     *info = 0;
00156     upper = lsame_(uplo, "U");
00157     if (! upper && ! lsame_(uplo, "L")) {
00158         *info = -1;
00159     } else if (*n < 0) {
00160         *info = -2;
00161     }
00162     if (*info != 0) {
00163         i__1 = -(*info);
00164         xerbla_("DSPTRD", &i__1);
00165         return 0;
00166     }
00167 
00168 /*     Quick return if possible */
00169 
00170     if (*n <= 0) {
00171         return 0;
00172     }
00173 
00174     if (upper) {
00175 
00176 /*        Reduce the upper triangle of A. */
00177 /*        I1 is the index in AP of A(1,I+1). */
00178 
00179         i1 = *n * (*n - 1) / 2 + 1;
00180         for (i__ = *n - 1; i__ >= 1; --i__) {
00181 
00182 /*           Generate elementary reflector H(i) = I - tau * v * v' */
00183 /*           to annihilate A(1:i-1,i+1) */
00184 
00185             dlarfg_(&i__, &ap[i1 + i__ - 1], &ap[i1], &c__1, &taui);
00186             e[i__] = ap[i1 + i__ - 1];
00187 
00188             if (taui != 0.) {
00189 
00190 /*              Apply H(i) from both sides to A(1:i,1:i) */
00191 
00192                 ap[i1 + i__ - 1] = 1.;
00193 
00194 /*              Compute  y := tau * A * v  storing y in TAU(1:i) */
00195 
00196                 dspmv_(uplo, &i__, &taui, &ap[1], &ap[i1], &c__1, &c_b8, &tau[
00197                         1], &c__1);
00198 
00199 /*              Compute  w := y - 1/2 * tau * (y'*v) * v */
00200 
00201                 alpha = taui * -.5 * ddot_(&i__, &tau[1], &c__1, &ap[i1], &
00202                         c__1);
00203                 daxpy_(&i__, &alpha, &ap[i1], &c__1, &tau[1], &c__1);
00204 
00205 /*              Apply the transformation as a rank-2 update: */
00206 /*                 A := A - v * w' - w * v' */
00207 
00208                 dspr2_(uplo, &i__, &c_b14, &ap[i1], &c__1, &tau[1], &c__1, &
00209                         ap[1]);
00210 
00211                 ap[i1 + i__ - 1] = e[i__];
00212             }
00213             d__[i__ + 1] = ap[i1 + i__];
00214             tau[i__] = taui;
00215             i1 -= i__;
00216 /* L10: */
00217         }
00218         d__[1] = ap[1];
00219     } else {
00220 
00221 /*        Reduce the lower triangle of A. II is the index in AP of */
00222 /*        A(i,i) and I1I1 is the index of A(i+1,i+1). */
00223 
00224         ii = 1;
00225         i__1 = *n - 1;
00226         for (i__ = 1; i__ <= i__1; ++i__) {
00227             i1i1 = ii + *n - i__ + 1;
00228 
00229 /*           Generate elementary reflector H(i) = I - tau * v * v' */
00230 /*           to annihilate A(i+2:n,i) */
00231 
00232             i__2 = *n - i__;
00233             dlarfg_(&i__2, &ap[ii + 1], &ap[ii + 2], &c__1, &taui);
00234             e[i__] = ap[ii + 1];
00235 
00236             if (taui != 0.) {
00237 
00238 /*              Apply H(i) from both sides to A(i+1:n,i+1:n) */
00239 
00240                 ap[ii + 1] = 1.;
00241 
00242 /*              Compute  y := tau * A * v  storing y in TAU(i:n-1) */
00243 
00244                 i__2 = *n - i__;
00245                 dspmv_(uplo, &i__2, &taui, &ap[i1i1], &ap[ii + 1], &c__1, &
00246                         c_b8, &tau[i__], &c__1);
00247 
00248 /*              Compute  w := y - 1/2 * tau * (y'*v) * v */
00249 
00250                 i__2 = *n - i__;
00251                 alpha = taui * -.5 * ddot_(&i__2, &tau[i__], &c__1, &ap[ii + 
00252                         1], &c__1);
00253                 i__2 = *n - i__;
00254                 daxpy_(&i__2, &alpha, &ap[ii + 1], &c__1, &tau[i__], &c__1);
00255 
00256 /*              Apply the transformation as a rank-2 update: */
00257 /*                 A := A - v * w' - w * v' */
00258 
00259                 i__2 = *n - i__;
00260                 dspr2_(uplo, &i__2, &c_b14, &ap[ii + 1], &c__1, &tau[i__], &
00261                         c__1, &ap[i1i1]);
00262 
00263                 ap[ii + 1] = e[i__];
00264             }
00265             d__[i__] = ap[ii];
00266             tau[i__] = taui;
00267             ii = i1i1;
00268 /* L20: */
00269         }
00270         d__[*n] = ap[ii];
00271     }
00272 
00273     return 0;
00274 
00275 /*     End of DSPTRD */
00276 
00277 } /* dsptrd_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:48