dspt01.c
Go to the documentation of this file.
00001 /* dspt01.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static doublereal c_b5 = 0.;
00019 static doublereal c_b6 = 1.;
00020 
00021 /* Subroutine */ int dspt01_(char *uplo, integer *n, doublereal *a, 
00022         doublereal *afac, integer *ipiv, doublereal *c__, integer *ldc, 
00023         doublereal *rwork, doublereal *resid)
00024 {
00025     /* System generated locals */
00026     integer c_dim1, c_offset, i__1, i__2;
00027 
00028     /* Local variables */
00029     integer i__, j, jc;
00030     doublereal eps;
00031     integer info;
00032     extern logical lsame_(char *, char *);
00033     doublereal anorm;
00034     extern doublereal dlamch_(char *);
00035     extern /* Subroutine */ int dlaset_(char *, integer *, integer *, 
00036             doublereal *, doublereal *, doublereal *, integer *);
00037     extern doublereal dlansp_(char *, char *, integer *, doublereal *, 
00038             doublereal *);
00039     extern /* Subroutine */ int dlavsp_(char *, char *, char *, integer *, 
00040             integer *, doublereal *, integer *, doublereal *, integer *, 
00041             integer *);
00042     extern doublereal dlansy_(char *, char *, integer *, doublereal *, 
00043             integer *, doublereal *);
00044 
00045 
00046 /*  -- LAPACK test routine (version 3.1) -- */
00047 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00048 /*     November 2006 */
00049 
00050 /*     .. Scalar Arguments .. */
00051 /*     .. */
00052 /*     .. Array Arguments .. */
00053 /*     .. */
00054 
00055 /*  Purpose */
00056 /*  ======= */
00057 
00058 /*  DSPT01 reconstructs a symmetric indefinite packed matrix A from its */
00059 /*  block L*D*L' or U*D*U' factorization and computes the residual */
00060 /*       norm( C - A ) / ( N * norm(A) * EPS ), */
00061 /*  where C is the reconstructed matrix and EPS is the machine epsilon. */
00062 
00063 /*  Arguments */
00064 /*  ========== */
00065 
00066 /*  UPLO    (input) CHARACTER*1 */
00067 /*          Specifies whether the upper or lower triangular part of the */
00068 /*          symmetric matrix A is stored: */
00069 /*          = 'U':  Upper triangular */
00070 /*          = 'L':  Lower triangular */
00071 
00072 /*  N       (input) INTEGER */
00073 /*          The number of rows and columns of the matrix A.  N >= 0. */
00074 
00075 /*  A       (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
00076 /*          The original symmetric matrix A, stored as a packed */
00077 /*          triangular matrix. */
00078 
00079 /*  AFAC    (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
00080 /*          The factored form of the matrix A, stored as a packed */
00081 /*          triangular matrix.  AFAC contains the block diagonal matrix D */
00082 /*          and the multipliers used to obtain the factor L or U from the */
00083 /*          block L*D*L' or U*D*U' factorization as computed by DSPTRF. */
00084 
00085 /*  IPIV    (input) INTEGER array, dimension (N) */
00086 /*          The pivot indices from DSPTRF. */
00087 
00088 /*  C       (workspace) DOUBLE PRECISION array, dimension (LDC,N) */
00089 
00090 /*  LDC     (integer) INTEGER */
00091 /*          The leading dimension of the array C.  LDC >= max(1,N). */
00092 
00093 /*  RWORK   (workspace) DOUBLE PRECISION array, dimension (N) */
00094 
00095 /*  RESID   (output) DOUBLE PRECISION */
00096 /*          If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS ) */
00097 /*          If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS ) */
00098 
00099 /*  ===================================================================== */
00100 
00101 /*     .. Parameters .. */
00102 /*     .. */
00103 /*     .. Local Scalars .. */
00104 /*     .. */
00105 /*     .. External Functions .. */
00106 /*     .. */
00107 /*     .. External Subroutines .. */
00108 /*     .. */
00109 /*     .. Intrinsic Functions .. */
00110 /*     .. */
00111 /*     .. Executable Statements .. */
00112 
00113 /*     Quick exit if N = 0. */
00114 
00115     /* Parameter adjustments */
00116     --a;
00117     --afac;
00118     --ipiv;
00119     c_dim1 = *ldc;
00120     c_offset = 1 + c_dim1;
00121     c__ -= c_offset;
00122     --rwork;
00123 
00124     /* Function Body */
00125     if (*n <= 0) {
00126         *resid = 0.;
00127         return 0;
00128     }
00129 
00130 /*     Determine EPS and the norm of A. */
00131 
00132     eps = dlamch_("Epsilon");
00133     anorm = dlansp_("1", uplo, n, &a[1], &rwork[1]);
00134 
00135 /*     Initialize C to the identity matrix. */
00136 
00137     dlaset_("Full", n, n, &c_b5, &c_b6, &c__[c_offset], ldc);
00138 
00139 /*     Call DLAVSP to form the product D * U' (or D * L' ). */
00140 
00141     dlavsp_(uplo, "Transpose", "Non-unit", n, n, &afac[1], &ipiv[1], &c__[
00142             c_offset], ldc, &info);
00143 
00144 /*     Call DLAVSP again to multiply by U ( or L ). */
00145 
00146     dlavsp_(uplo, "No transpose", "Unit", n, n, &afac[1], &ipiv[1], &c__[
00147             c_offset], ldc, &info);
00148 
00149 /*     Compute the difference  C - A . */
00150 
00151     if (lsame_(uplo, "U")) {
00152         jc = 0;
00153         i__1 = *n;
00154         for (j = 1; j <= i__1; ++j) {
00155             i__2 = j;
00156             for (i__ = 1; i__ <= i__2; ++i__) {
00157                 c__[i__ + j * c_dim1] -= a[jc + i__];
00158 /* L10: */
00159             }
00160             jc += j;
00161 /* L20: */
00162         }
00163     } else {
00164         jc = 1;
00165         i__1 = *n;
00166         for (j = 1; j <= i__1; ++j) {
00167             i__2 = *n;
00168             for (i__ = j; i__ <= i__2; ++i__) {
00169                 c__[i__ + j * c_dim1] -= a[jc + i__ - j];
00170 /* L30: */
00171             }
00172             jc = jc + *n - j + 1;
00173 /* L40: */
00174         }
00175     }
00176 
00177 /*     Compute norm( C - A ) / ( N * norm(A) * EPS ) */
00178 
00179     *resid = dlansy_("1", uplo, n, &c__[c_offset], ldc, &rwork[1]);
00180 
00181     if (anorm <= 0.) {
00182         if (*resid != 0.) {
00183             *resid = 1. / eps;
00184         }
00185     } else {
00186         *resid = *resid / (doublereal) (*n) / anorm / eps;
00187     }
00188 
00189     return 0;
00190 
00191 /*     End of DSPT01 */
00192 
00193 } /* dspt01_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:48