dsposv.c
Go to the documentation of this file.
00001 /* dsposv.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static doublereal c_b10 = -1.;
00019 static doublereal c_b11 = 1.;
00020 static integer c__1 = 1;
00021 
00022 /* Subroutine */ int dsposv_(char *uplo, integer *n, integer *nrhs, 
00023         doublereal *a, integer *lda, doublereal *b, integer *ldb, doublereal *
00024         x, integer *ldx, doublereal *work, real *swork, integer *iter, 
00025         integer *info)
00026 {
00027     /* System generated locals */
00028     integer a_dim1, a_offset, b_dim1, b_offset, work_dim1, work_offset, 
00029             x_dim1, x_offset, i__1;
00030     doublereal d__1;
00031 
00032     /* Builtin functions */
00033     double sqrt(doublereal);
00034 
00035     /* Local variables */
00036     integer i__;
00037     doublereal cte, eps, anrm;
00038     integer ptsa;
00039     doublereal rnrm, xnrm;
00040     integer ptsx;
00041     extern logical lsame_(char *, char *);
00042     integer iiter;
00043     extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *, 
00044             integer *, doublereal *, integer *), dsymm_(char *, char *, 
00045             integer *, integer *, doublereal *, doublereal *, integer *, 
00046             doublereal *, integer *, doublereal *, doublereal *, integer *), dlag2s_(integer *, integer *, doublereal *, 
00047             integer *, real *, integer *, integer *), slag2d_(integer *, 
00048             integer *, real *, integer *, doublereal *, integer *, integer *),
00049              dlat2s_(char *, integer *, doublereal *, integer *, real *, 
00050             integer *, integer *);
00051     extern doublereal dlamch_(char *);
00052     extern integer idamax_(integer *, doublereal *, integer *);
00053     extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
00054             doublereal *, integer *, doublereal *, integer *), 
00055             xerbla_(char *, integer *);
00056     extern doublereal dlansy_(char *, char *, integer *, doublereal *, 
00057             integer *, doublereal *);
00058     extern /* Subroutine */ int dpotrf_(char *, integer *, doublereal *, 
00059             integer *, integer *), dpotrs_(char *, integer *, integer 
00060             *, doublereal *, integer *, doublereal *, integer *, integer *), spotrf_(char *, integer *, real *, integer *, integer *), spotrs_(char *, integer *, integer *, real *, integer *, 
00061             real *, integer *, integer *);
00062 
00063 
00064 /*  -- LAPACK PROTOTYPE driver routine (version 3.1.2) -- */
00065 /*     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd.. */
00066 /*     May 2007 */
00067 
00068 /*     .. */
00069 /*     .. Scalar Arguments .. */
00070 /*     .. */
00071 /*     .. Array Arguments .. */
00072 /*     .. */
00073 
00074 /*  Purpose */
00075 /*  ======= */
00076 
00077 /*  DSPOSV computes the solution to a real system of linear equations */
00078 /*     A * X = B, */
00079 /*  where A is an N-by-N symmetric positive definite matrix and X and B */
00080 /*  are N-by-NRHS matrices. */
00081 
00082 /*  DSPOSV first attempts to factorize the matrix in SINGLE PRECISION */
00083 /*  and use this factorization within an iterative refinement procedure */
00084 /*  to produce a solution with DOUBLE PRECISION normwise backward error */
00085 /*  quality (see below). If the approach fails the method switches to a */
00086 /*  DOUBLE PRECISION factorization and solve. */
00087 
00088 /*  The iterative refinement is not going to be a winning strategy if */
00089 /*  the ratio SINGLE PRECISION performance over DOUBLE PRECISION */
00090 /*  performance is too small. A reasonable strategy should take the */
00091 /*  number of right-hand sides and the size of the matrix into account. */
00092 /*  This might be done with a call to ILAENV in the future. Up to now, we */
00093 /*  always try iterative refinement. */
00094 
00095 /*  The iterative refinement process is stopped if */
00096 /*      ITER > ITERMAX */
00097 /*  or for all the RHS we have: */
00098 /*      RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX */
00099 /*  where */
00100 /*      o ITER is the number of the current iteration in the iterative */
00101 /*        refinement process */
00102 /*      o RNRM is the infinity-norm of the residual */
00103 /*      o XNRM is the infinity-norm of the solution */
00104 /*      o ANRM is the infinity-operator-norm of the matrix A */
00105 /*      o EPS is the machine epsilon returned by DLAMCH('Epsilon') */
00106 /*  The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00 */
00107 /*  respectively. */
00108 
00109 /*  Arguments */
00110 /*  ========= */
00111 
00112 /*  UPLO    (input) CHARACTER */
00113 /*          = 'U':  Upper triangle of A is stored; */
00114 /*          = 'L':  Lower triangle of A is stored. */
00115 
00116 /*  N       (input) INTEGER */
00117 /*          The number of linear equations, i.e., the order of the */
00118 /*          matrix A.  N >= 0. */
00119 
00120 /*  NRHS    (input) INTEGER */
00121 /*          The number of right hand sides, i.e., the number of columns */
00122 /*          of the matrix B.  NRHS >= 0. */
00123 
00124 /*  A       (input or input/ouptut) DOUBLE PRECISION array, */
00125 /*          dimension (LDA,N) */
00126 /*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading */
00127 /*          N-by-N upper triangular part of A contains the upper */
00128 /*          triangular part of the matrix A, and the strictly lower */
00129 /*          triangular part of A is not referenced.  If UPLO = 'L', the */
00130 /*          leading N-by-N lower triangular part of A contains the lower */
00131 /*          triangular part of the matrix A, and the strictly upper */
00132 /*          triangular part of A is not referenced. */
00133 /*          On exit, if iterative refinement has been successfully used */
00134 /*          (INFO.EQ.0 and ITER.GE.0, see description below), then A is */
00135 /*          unchanged, if double precision factorization has been used */
00136 /*          (INFO.EQ.0 and ITER.LT.0, see description below), then the */
00137 /*          array A contains the factor U or L from the Cholesky */
00138 /*          factorization A = U**T*U or A = L*L**T. */
00139 
00140 
00141 /*  LDA     (input) INTEGER */
00142 /*          The leading dimension of the array A.  LDA >= max(1,N). */
00143 
00144 /*  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */
00145 /*          The N-by-NRHS right hand side matrix B. */
00146 
00147 /*  LDB     (input) INTEGER */
00148 /*          The leading dimension of the array B.  LDB >= max(1,N). */
00149 
00150 /*  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS) */
00151 /*          If INFO = 0, the N-by-NRHS solution matrix X. */
00152 
00153 /*  LDX     (input) INTEGER */
00154 /*          The leading dimension of the array X.  LDX >= max(1,N). */
00155 
00156 /*  WORK    (workspace) DOUBLE PRECISION array, dimension (N*NRHS) */
00157 /*          This array is used to hold the residual vectors. */
00158 
00159 /*  SWORK   (workspace) REAL array, dimension (N*(N+NRHS)) */
00160 /*          This array is used to use the single precision matrix and the */
00161 /*          right-hand sides or solutions in single precision. */
00162 
00163 /*  ITER    (output) INTEGER */
00164 /*          < 0: iterative refinement has failed, double precision */
00165 /*               factorization has been performed */
00166 /*               -1 : the routine fell back to full precision for */
00167 /*                    implementation- or machine-specific reasons */
00168 /*               -2 : narrowing the precision induced an overflow, */
00169 /*                    the routine fell back to full precision */
00170 /*               -3 : failure of SPOTRF */
00171 /*               -31: stop the iterative refinement after the 30th */
00172 /*                    iterations */
00173 /*          > 0: iterative refinement has been sucessfully used. */
00174 /*               Returns the number of iterations */
00175 
00176 /*  INFO    (output) INTEGER */
00177 /*          = 0:  successful exit */
00178 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00179 /*          > 0:  if INFO = i, the leading minor of order i of (DOUBLE */
00180 /*                PRECISION) A is not positive definite, so the */
00181 /*                factorization could not be completed, and the solution */
00182 /*                has not been computed. */
00183 
00184 /*  ========= */
00185 
00186 /*     .. Parameters .. */
00187 
00188 
00189 
00190 
00191 /*     .. Local Scalars .. */
00192 
00193 /*     .. External Subroutines .. */
00194 /*     .. */
00195 /*     .. External Functions .. */
00196 /*     .. */
00197 /*     .. Intrinsic Functions .. */
00198 /*     .. */
00199 /*     .. Executable Statements .. */
00200 
00201     /* Parameter adjustments */
00202     work_dim1 = *n;
00203     work_offset = 1 + work_dim1;
00204     work -= work_offset;
00205     a_dim1 = *lda;
00206     a_offset = 1 + a_dim1;
00207     a -= a_offset;
00208     b_dim1 = *ldb;
00209     b_offset = 1 + b_dim1;
00210     b -= b_offset;
00211     x_dim1 = *ldx;
00212     x_offset = 1 + x_dim1;
00213     x -= x_offset;
00214     --swork;
00215 
00216     /* Function Body */
00217     *info = 0;
00218     *iter = 0;
00219 
00220 /*     Test the input parameters. */
00221 
00222     if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
00223         *info = -1;
00224     } else if (*n < 0) {
00225         *info = -2;
00226     } else if (*nrhs < 0) {
00227         *info = -3;
00228     } else if (*lda < max(1,*n)) {
00229         *info = -5;
00230     } else if (*ldb < max(1,*n)) {
00231         *info = -7;
00232     } else if (*ldx < max(1,*n)) {
00233         *info = -9;
00234     }
00235     if (*info != 0) {
00236         i__1 = -(*info);
00237         xerbla_("DSPOSV", &i__1);
00238         return 0;
00239     }
00240 
00241 /*     Quick return if (N.EQ.0). */
00242 
00243     if (*n == 0) {
00244         return 0;
00245     }
00246 
00247 /*     Skip single precision iterative refinement if a priori slower */
00248 /*     than double precision factorization. */
00249 
00250     if (FALSE_) {
00251         *iter = -1;
00252         goto L40;
00253     }
00254 
00255 /*     Compute some constants. */
00256 
00257     anrm = dlansy_("I", uplo, n, &a[a_offset], lda, &work[work_offset]);
00258     eps = dlamch_("Epsilon");
00259     cte = anrm * eps * sqrt((doublereal) (*n)) * 1.;
00260 
00261 /*     Set the indices PTSA, PTSX for referencing SA and SX in SWORK. */
00262 
00263     ptsa = 1;
00264     ptsx = ptsa + *n * *n;
00265 
00266 /*     Convert B from double precision to single precision and store the */
00267 /*     result in SX. */
00268 
00269     dlag2s_(n, nrhs, &b[b_offset], ldb, &swork[ptsx], n, info);
00270 
00271     if (*info != 0) {
00272         *iter = -2;
00273         goto L40;
00274     }
00275 
00276 /*     Convert A from double precision to single precision and store the */
00277 /*     result in SA. */
00278 
00279     dlat2s_(uplo, n, &a[a_offset], lda, &swork[ptsa], n, info);
00280 
00281     if (*info != 0) {
00282         *iter = -2;
00283         goto L40;
00284     }
00285 
00286 /*     Compute the Cholesky factorization of SA. */
00287 
00288     spotrf_(uplo, n, &swork[ptsa], n, info);
00289 
00290     if (*info != 0) {
00291         *iter = -3;
00292         goto L40;
00293     }
00294 
00295 /*     Solve the system SA*SX = SB. */
00296 
00297     spotrs_(uplo, n, nrhs, &swork[ptsa], n, &swork[ptsx], n, info);
00298 
00299 /*     Convert SX back to double precision */
00300 
00301     slag2d_(n, nrhs, &swork[ptsx], n, &x[x_offset], ldx, info);
00302 
00303 /*     Compute R = B - AX (R is WORK). */
00304 
00305     dlacpy_("All", n, nrhs, &b[b_offset], ldb, &work[work_offset], n);
00306 
00307     dsymm_("Left", uplo, n, nrhs, &c_b10, &a[a_offset], lda, &x[x_offset], 
00308             ldx, &c_b11, &work[work_offset], n);
00309 
00310 /*     Check whether the NRHS normwise backward errors satisfy the */
00311 /*     stopping criterion. If yes, set ITER=0 and return. */
00312 
00313     i__1 = *nrhs;
00314     for (i__ = 1; i__ <= i__1; ++i__) {
00315         xnrm = (d__1 = x[idamax_(n, &x[i__ * x_dim1 + 1], &c__1) + i__ * 
00316                 x_dim1], abs(d__1));
00317         rnrm = (d__1 = work[idamax_(n, &work[i__ * work_dim1 + 1], &c__1) + 
00318                 i__ * work_dim1], abs(d__1));
00319         if (rnrm > xnrm * cte) {
00320             goto L10;
00321         }
00322     }
00323 
00324 /*     If we are here, the NRHS normwise backward errors satisfy the */
00325 /*     stopping criterion. We are good to exit. */
00326 
00327     *iter = 0;
00328     return 0;
00329 
00330 L10:
00331 
00332     for (iiter = 1; iiter <= 30; ++iiter) {
00333 
00334 /*        Convert R (in WORK) from double precision to single precision */
00335 /*        and store the result in SX. */
00336 
00337         dlag2s_(n, nrhs, &work[work_offset], n, &swork[ptsx], n, info);
00338 
00339         if (*info != 0) {
00340             *iter = -2;
00341             goto L40;
00342         }
00343 
00344 /*        Solve the system SA*SX = SR. */
00345 
00346         spotrs_(uplo, n, nrhs, &swork[ptsa], n, &swork[ptsx], n, info);
00347 
00348 /*        Convert SX back to double precision and update the current */
00349 /*        iterate. */
00350 
00351         slag2d_(n, nrhs, &swork[ptsx], n, &work[work_offset], n, info);
00352 
00353         i__1 = *nrhs;
00354         for (i__ = 1; i__ <= i__1; ++i__) {
00355             daxpy_(n, &c_b11, &work[i__ * work_dim1 + 1], &c__1, &x[i__ * 
00356                     x_dim1 + 1], &c__1);
00357         }
00358 
00359 /*        Compute R = B - AX (R is WORK). */
00360 
00361         dlacpy_("All", n, nrhs, &b[b_offset], ldb, &work[work_offset], n);
00362 
00363         dsymm_("L", uplo, n, nrhs, &c_b10, &a[a_offset], lda, &x[x_offset], 
00364                 ldx, &c_b11, &work[work_offset], n);
00365 
00366 /*        Check whether the NRHS normwise backward errors satisfy the */
00367 /*        stopping criterion. If yes, set ITER=IITER>0 and return. */
00368 
00369         i__1 = *nrhs;
00370         for (i__ = 1; i__ <= i__1; ++i__) {
00371             xnrm = (d__1 = x[idamax_(n, &x[i__ * x_dim1 + 1], &c__1) + i__ * 
00372                     x_dim1], abs(d__1));
00373             rnrm = (d__1 = work[idamax_(n, &work[i__ * work_dim1 + 1], &c__1) 
00374                     + i__ * work_dim1], abs(d__1));
00375             if (rnrm > xnrm * cte) {
00376                 goto L20;
00377             }
00378         }
00379 
00380 /*        If we are here, the NRHS normwise backward errors satisfy the */
00381 /*        stopping criterion, we are good to exit. */
00382 
00383         *iter = iiter;
00384 
00385         return 0;
00386 
00387 L20:
00388 
00389 /* L30: */
00390         ;
00391     }
00392 
00393 /*     If we are at this place of the code, this is because we have */
00394 /*     performed ITER=ITERMAX iterations and never satisified the */
00395 /*     stopping criterion, set up the ITER flag accordingly and follow */
00396 /*     up on double precision routine. */
00397 
00398     *iter = -31;
00399 
00400 L40:
00401 
00402 /*     Single-precision iterative refinement failed to converge to a */
00403 /*     satisfactory solution, so we resort to double precision. */
00404 
00405     dpotrf_(uplo, n, &a[a_offset], lda, info);
00406 
00407     if (*info != 0) {
00408         return 0;
00409     }
00410 
00411     dlacpy_("All", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
00412     dpotrs_(uplo, n, nrhs, &a[a_offset], lda, &x[x_offset], ldx, info);
00413 
00414     return 0;
00415 
00416 /*     End of DSPOSV. */
00417 
00418 } /* dsposv_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:48