00001 /* dsbgv.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int dsbgv_(char *jobz, char *uplo, integer *n, integer *ka, 00017 integer *kb, doublereal *ab, integer *ldab, doublereal *bb, integer * 00018 ldbb, doublereal *w, doublereal *z__, integer *ldz, doublereal *work, 00019 integer *info) 00020 { 00021 /* System generated locals */ 00022 integer ab_dim1, ab_offset, bb_dim1, bb_offset, z_dim1, z_offset, i__1; 00023 00024 /* Local variables */ 00025 integer inde; 00026 char vect[1]; 00027 extern logical lsame_(char *, char *); 00028 integer iinfo; 00029 logical upper, wantz; 00030 extern /* Subroutine */ int xerbla_(char *, integer *), dpbstf_( 00031 char *, integer *, integer *, doublereal *, integer *, integer *), dsbtrd_(char *, char *, integer *, integer *, doublereal 00032 *, integer *, doublereal *, doublereal *, doublereal *, integer *, 00033 doublereal *, integer *), dsbgst_(char *, char *, 00034 integer *, integer *, integer *, doublereal *, integer *, 00035 doublereal *, integer *, doublereal *, integer *, doublereal *, 00036 integer *), dsterf_(integer *, doublereal *, 00037 doublereal *, integer *); 00038 integer indwrk; 00039 extern /* Subroutine */ int dsteqr_(char *, integer *, doublereal *, 00040 doublereal *, doublereal *, integer *, doublereal *, integer *); 00041 00042 00043 /* -- LAPACK driver routine (version 3.2) -- */ 00044 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00045 /* November 2006 */ 00046 00047 /* .. Scalar Arguments .. */ 00048 /* .. */ 00049 /* .. Array Arguments .. */ 00050 /* .. */ 00051 00052 /* Purpose */ 00053 /* ======= */ 00054 00055 /* DSBGV computes all the eigenvalues, and optionally, the eigenvectors */ 00056 /* of a real generalized symmetric-definite banded eigenproblem, of */ 00057 /* the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric */ 00058 /* and banded, and B is also positive definite. */ 00059 00060 /* Arguments */ 00061 /* ========= */ 00062 00063 /* JOBZ (input) CHARACTER*1 */ 00064 /* = 'N': Compute eigenvalues only; */ 00065 /* = 'V': Compute eigenvalues and eigenvectors. */ 00066 00067 /* UPLO (input) CHARACTER*1 */ 00068 /* = 'U': Upper triangles of A and B are stored; */ 00069 /* = 'L': Lower triangles of A and B are stored. */ 00070 00071 /* N (input) INTEGER */ 00072 /* The order of the matrices A and B. N >= 0. */ 00073 00074 /* KA (input) INTEGER */ 00075 /* The number of superdiagonals of the matrix A if UPLO = 'U', */ 00076 /* or the number of subdiagonals if UPLO = 'L'. KA >= 0. */ 00077 00078 /* KB (input) INTEGER */ 00079 /* The number of superdiagonals of the matrix B if UPLO = 'U', */ 00080 /* or the number of subdiagonals if UPLO = 'L'. KB >= 0. */ 00081 00082 /* AB (input/output) DOUBLE PRECISION array, dimension (LDAB, N) */ 00083 /* On entry, the upper or lower triangle of the symmetric band */ 00084 /* matrix A, stored in the first ka+1 rows of the array. The */ 00085 /* j-th column of A is stored in the j-th column of the array AB */ 00086 /* as follows: */ 00087 /* if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; */ 00088 /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). */ 00089 00090 /* On exit, the contents of AB are destroyed. */ 00091 00092 /* LDAB (input) INTEGER */ 00093 /* The leading dimension of the array AB. LDAB >= KA+1. */ 00094 00095 /* BB (input/output) DOUBLE PRECISION array, dimension (LDBB, N) */ 00096 /* On entry, the upper or lower triangle of the symmetric band */ 00097 /* matrix B, stored in the first kb+1 rows of the array. The */ 00098 /* j-th column of B is stored in the j-th column of the array BB */ 00099 /* as follows: */ 00100 /* if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; */ 00101 /* if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). */ 00102 00103 /* On exit, the factor S from the split Cholesky factorization */ 00104 /* B = S**T*S, as returned by DPBSTF. */ 00105 00106 /* LDBB (input) INTEGER */ 00107 /* The leading dimension of the array BB. LDBB >= KB+1. */ 00108 00109 /* W (output) DOUBLE PRECISION array, dimension (N) */ 00110 /* If INFO = 0, the eigenvalues in ascending order. */ 00111 00112 /* Z (output) DOUBLE PRECISION array, dimension (LDZ, N) */ 00113 /* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */ 00114 /* eigenvectors, with the i-th column of Z holding the */ 00115 /* eigenvector associated with W(i). The eigenvectors are */ 00116 /* normalized so that Z**T*B*Z = I. */ 00117 /* If JOBZ = 'N', then Z is not referenced. */ 00118 00119 /* LDZ (input) INTEGER */ 00120 /* The leading dimension of the array Z. LDZ >= 1, and if */ 00121 /* JOBZ = 'V', LDZ >= N. */ 00122 00123 /* WORK (workspace) DOUBLE PRECISION array, dimension (3*N) */ 00124 00125 /* INFO (output) INTEGER */ 00126 /* = 0: successful exit */ 00127 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00128 /* > 0: if INFO = i, and i is: */ 00129 /* <= N: the algorithm failed to converge: */ 00130 /* i off-diagonal elements of an intermediate */ 00131 /* tridiagonal form did not converge to zero; */ 00132 /* > N: if INFO = N + i, for 1 <= i <= N, then DPBSTF */ 00133 /* returned INFO = i: B is not positive definite. */ 00134 /* The factorization of B could not be completed and */ 00135 /* no eigenvalues or eigenvectors were computed. */ 00136 00137 /* ===================================================================== */ 00138 00139 /* .. Local Scalars .. */ 00140 /* .. */ 00141 /* .. External Functions .. */ 00142 /* .. */ 00143 /* .. External Subroutines .. */ 00144 /* .. */ 00145 /* .. Executable Statements .. */ 00146 00147 /* Test the input parameters. */ 00148 00149 /* Parameter adjustments */ 00150 ab_dim1 = *ldab; 00151 ab_offset = 1 + ab_dim1; 00152 ab -= ab_offset; 00153 bb_dim1 = *ldbb; 00154 bb_offset = 1 + bb_dim1; 00155 bb -= bb_offset; 00156 --w; 00157 z_dim1 = *ldz; 00158 z_offset = 1 + z_dim1; 00159 z__ -= z_offset; 00160 --work; 00161 00162 /* Function Body */ 00163 wantz = lsame_(jobz, "V"); 00164 upper = lsame_(uplo, "U"); 00165 00166 *info = 0; 00167 if (! (wantz || lsame_(jobz, "N"))) { 00168 *info = -1; 00169 } else if (! (upper || lsame_(uplo, "L"))) { 00170 *info = -2; 00171 } else if (*n < 0) { 00172 *info = -3; 00173 } else if (*ka < 0) { 00174 *info = -4; 00175 } else if (*kb < 0 || *kb > *ka) { 00176 *info = -5; 00177 } else if (*ldab < *ka + 1) { 00178 *info = -7; 00179 } else if (*ldbb < *kb + 1) { 00180 *info = -9; 00181 } else if (*ldz < 1 || wantz && *ldz < *n) { 00182 *info = -12; 00183 } 00184 if (*info != 0) { 00185 i__1 = -(*info); 00186 xerbla_("DSBGV ", &i__1); 00187 return 0; 00188 } 00189 00190 /* Quick return if possible */ 00191 00192 if (*n == 0) { 00193 return 0; 00194 } 00195 00196 /* Form a split Cholesky factorization of B. */ 00197 00198 dpbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info); 00199 if (*info != 0) { 00200 *info = *n + *info; 00201 return 0; 00202 } 00203 00204 /* Transform problem to standard eigenvalue problem. */ 00205 00206 inde = 1; 00207 indwrk = inde + *n; 00208 dsbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb, 00209 &z__[z_offset], ldz, &work[indwrk], &iinfo) 00210 ; 00211 00212 /* Reduce to tridiagonal form. */ 00213 00214 if (wantz) { 00215 *(unsigned char *)vect = 'U'; 00216 } else { 00217 *(unsigned char *)vect = 'N'; 00218 } 00219 dsbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &w[1], &work[inde], &z__[ 00220 z_offset], ldz, &work[indwrk], &iinfo); 00221 00222 /* For eigenvalues only, call DSTERF. For eigenvectors, call SSTEQR. */ 00223 00224 if (! wantz) { 00225 dsterf_(n, &w[1], &work[inde], info); 00226 } else { 00227 dsteqr_(jobz, n, &w[1], &work[inde], &z__[z_offset], ldz, &work[ 00228 indwrk], info); 00229 } 00230 return 0; 00231 00232 /* End of DSBGV */ 00233 00234 } /* dsbgv_ */