dqrt02.c
Go to the documentation of this file.
00001 /* dqrt02.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Common Block Declarations */
00017 
00018 struct {
00019     char srnamt[32];
00020 } srnamc_;
00021 
00022 #define srnamc_1 srnamc_
00023 
00024 /* Table of constant values */
00025 
00026 static doublereal c_b4 = -1e10;
00027 static doublereal c_b9 = 0.;
00028 static doublereal c_b14 = -1.;
00029 static doublereal c_b15 = 1.;
00030 
00031 /* Subroutine */ int dqrt02_(integer *m, integer *n, integer *k, doublereal *
00032         a, doublereal *af, doublereal *q, doublereal *r__, integer *lda, 
00033         doublereal *tau, doublereal *work, integer *lwork, doublereal *rwork, 
00034         doublereal *result)
00035 {
00036     /* System generated locals */
00037     integer a_dim1, a_offset, af_dim1, af_offset, q_dim1, q_offset, r_dim1, 
00038             r_offset, i__1;
00039 
00040     /* Builtin functions */
00041     /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
00042 
00043     /* Local variables */
00044     doublereal eps;
00045     integer info;
00046     extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 
00047             integer *, doublereal *, doublereal *, integer *, doublereal *, 
00048             integer *, doublereal *, doublereal *, integer *);
00049     doublereal resid, anorm;
00050     extern /* Subroutine */ int dsyrk_(char *, char *, integer *, integer *, 
00051             doublereal *, doublereal *, integer *, doublereal *, doublereal *, 
00052              integer *);
00053     extern doublereal dlamch_(char *), dlange_(char *, integer *, 
00054             integer *, doublereal *, integer *, doublereal *);
00055     extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
00056             doublereal *, integer *, doublereal *, integer *), 
00057             dlaset_(char *, integer *, integer *, doublereal *, doublereal *, 
00058             doublereal *, integer *);
00059     extern doublereal dlansy_(char *, char *, integer *, doublereal *, 
00060             integer *, doublereal *);
00061     extern /* Subroutine */ int dorgqr_(integer *, integer *, integer *, 
00062             doublereal *, integer *, doublereal *, doublereal *, integer *, 
00063             integer *);
00064 
00065 
00066 /*  -- LAPACK test routine (version 3.1) -- */
00067 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00068 /*     November 2006 */
00069 
00070 /*     .. Scalar Arguments .. */
00071 /*     .. */
00072 /*     .. Array Arguments .. */
00073 /*     .. */
00074 
00075 /*  Purpose */
00076 /*  ======= */
00077 
00078 /*  DQRT02 tests DORGQR, which generates an m-by-n matrix Q with */
00079 /*  orthonornmal columns that is defined as the product of k elementary */
00080 /*  reflectors. */
00081 
00082 /*  Given the QR factorization of an m-by-n matrix A, DQRT02 generates */
00083 /*  the orthogonal matrix Q defined by the factorization of the first k */
00084 /*  columns of A; it compares R(1:n,1:k) with Q(1:m,1:n)'*A(1:m,1:k), */
00085 /*  and checks that the columns of Q are orthonormal. */
00086 
00087 /*  Arguments */
00088 /*  ========= */
00089 
00090 /*  M       (input) INTEGER */
00091 /*          The number of rows of the matrix Q to be generated.  M >= 0. */
00092 
00093 /*  N       (input) INTEGER */
00094 /*          The number of columns of the matrix Q to be generated. */
00095 /*          M >= N >= 0. */
00096 
00097 /*  K       (input) INTEGER */
00098 /*          The number of elementary reflectors whose product defines the */
00099 /*          matrix Q. N >= K >= 0. */
00100 
00101 /*  A       (input) DOUBLE PRECISION array, dimension (LDA,N) */
00102 /*          The m-by-n matrix A which was factorized by DQRT01. */
00103 
00104 /*  AF      (input) DOUBLE PRECISION array, dimension (LDA,N) */
00105 /*          Details of the QR factorization of A, as returned by DGEQRF. */
00106 /*          See DGEQRF for further details. */
00107 
00108 /*  Q       (workspace) DOUBLE PRECISION array, dimension (LDA,N) */
00109 
00110 /*  R       (workspace) DOUBLE PRECISION array, dimension (LDA,N) */
00111 
00112 /*  LDA     (input) INTEGER */
00113 /*          The leading dimension of the arrays A, AF, Q and R. LDA >= M. */
00114 
00115 /*  TAU     (input) DOUBLE PRECISION array, dimension (N) */
00116 /*          The scalar factors of the elementary reflectors corresponding */
00117 /*          to the QR factorization in AF. */
00118 
00119 /*  WORK    (workspace) DOUBLE PRECISION array, dimension (LWORK) */
00120 
00121 /*  LWORK   (input) INTEGER */
00122 /*          The dimension of the array WORK. */
00123 
00124 /*  RWORK   (workspace) DOUBLE PRECISION array, dimension (M) */
00125 
00126 /*  RESULT  (output) DOUBLE PRECISION array, dimension (2) */
00127 /*          The test ratios: */
00128 /*          RESULT(1) = norm( R - Q'*A ) / ( M * norm(A) * EPS ) */
00129 /*          RESULT(2) = norm( I - Q'*Q ) / ( M * EPS ) */
00130 
00131 /*  ===================================================================== */
00132 
00133 /*     .. Parameters .. */
00134 /*     .. */
00135 /*     .. Local Scalars .. */
00136 /*     .. */
00137 /*     .. External Functions .. */
00138 /*     .. */
00139 /*     .. External Subroutines .. */
00140 /*     .. */
00141 /*     .. Intrinsic Functions .. */
00142 /*     .. */
00143 /*     .. Scalars in Common .. */
00144 /*     .. */
00145 /*     .. Common blocks .. */
00146 /*     .. */
00147 /*     .. Executable Statements .. */
00148 
00149     /* Parameter adjustments */
00150     r_dim1 = *lda;
00151     r_offset = 1 + r_dim1;
00152     r__ -= r_offset;
00153     q_dim1 = *lda;
00154     q_offset = 1 + q_dim1;
00155     q -= q_offset;
00156     af_dim1 = *lda;
00157     af_offset = 1 + af_dim1;
00158     af -= af_offset;
00159     a_dim1 = *lda;
00160     a_offset = 1 + a_dim1;
00161     a -= a_offset;
00162     --tau;
00163     --work;
00164     --rwork;
00165     --result;
00166 
00167     /* Function Body */
00168     eps = dlamch_("Epsilon");
00169 
00170 /*     Copy the first k columns of the factorization to the array Q */
00171 
00172     dlaset_("Full", m, n, &c_b4, &c_b4, &q[q_offset], lda);
00173     i__1 = *m - 1;
00174     dlacpy_("Lower", &i__1, k, &af[af_dim1 + 2], lda, &q[q_dim1 + 2], lda);
00175 
00176 /*     Generate the first n columns of the matrix Q */
00177 
00178     s_copy(srnamc_1.srnamt, "DORGQR", (ftnlen)32, (ftnlen)6);
00179     dorgqr_(m, n, k, &q[q_offset], lda, &tau[1], &work[1], lwork, &info);
00180 
00181 /*     Copy R(1:n,1:k) */
00182 
00183     dlaset_("Full", n, k, &c_b9, &c_b9, &r__[r_offset], lda);
00184     dlacpy_("Upper", n, k, &af[af_offset], lda, &r__[r_offset], lda);
00185 
00186 /*     Compute R(1:n,1:k) - Q(1:m,1:n)' * A(1:m,1:k) */
00187 
00188     dgemm_("Transpose", "No transpose", n, k, m, &c_b14, &q[q_offset], lda, &
00189             a[a_offset], lda, &c_b15, &r__[r_offset], lda);
00190 
00191 /*     Compute norm( R - Q'*A ) / ( M * norm(A) * EPS ) . */
00192 
00193     anorm = dlange_("1", m, k, &a[a_offset], lda, &rwork[1]);
00194     resid = dlange_("1", n, k, &r__[r_offset], lda, &rwork[1]);
00195     if (anorm > 0.) {
00196         result[1] = resid / (doublereal) max(1,*m) / anorm / eps;
00197     } else {
00198         result[1] = 0.;
00199     }
00200 
00201 /*     Compute I - Q'*Q */
00202 
00203     dlaset_("Full", n, n, &c_b9, &c_b15, &r__[r_offset], lda);
00204     dsyrk_("Upper", "Transpose", n, m, &c_b14, &q[q_offset], lda, &c_b15, &
00205             r__[r_offset], lda);
00206 
00207 /*     Compute norm( I - Q'*Q ) / ( M * EPS ) . */
00208 
00209     resid = dlansy_("1", "Upper", n, &r__[r_offset], lda, &rwork[1]);
00210 
00211     result[2] = resid / (doublereal) max(1,*m) / eps;
00212 
00213     return 0;
00214 
00215 /*     End of DQRT02 */
00216 
00217 } /* dqrt02_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:48