dqlt01.c
Go to the documentation of this file.
00001 /* dqlt01.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Common Block Declarations */
00017 
00018 struct {
00019     char srnamt[32];
00020 } srnamc_;
00021 
00022 #define srnamc_1 srnamc_
00023 
00024 /* Table of constant values */
00025 
00026 static doublereal c_b6 = -1e10;
00027 static doublereal c_b13 = 0.;
00028 static doublereal c_b20 = -1.;
00029 static doublereal c_b21 = 1.;
00030 
00031 /* Subroutine */ int dqlt01_(integer *m, integer *n, doublereal *a, 
00032         doublereal *af, doublereal *q, doublereal *l, integer *lda, 
00033         doublereal *tau, doublereal *work, integer *lwork, doublereal *rwork, 
00034         doublereal *result)
00035 {
00036     /* System generated locals */
00037     integer a_dim1, a_offset, af_dim1, af_offset, l_dim1, l_offset, q_dim1, 
00038             q_offset, i__1, i__2;
00039 
00040     /* Builtin functions */
00041     /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
00042 
00043     /* Local variables */
00044     doublereal eps;
00045     integer info;
00046     extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 
00047             integer *, doublereal *, doublereal *, integer *, doublereal *, 
00048             integer *, doublereal *, doublereal *, integer *);
00049     doublereal resid, anorm;
00050     integer minmn;
00051     extern /* Subroutine */ int dsyrk_(char *, char *, integer *, integer *, 
00052             doublereal *, doublereal *, integer *, doublereal *, doublereal *, 
00053              integer *);
00054     extern doublereal dlamch_(char *), dlange_(char *, integer *, 
00055             integer *, doublereal *, integer *, doublereal *);
00056     extern /* Subroutine */ int dgeqlf_(integer *, integer *, doublereal *, 
00057             integer *, doublereal *, doublereal *, integer *, integer *), 
00058             dlacpy_(char *, integer *, integer *, doublereal *, integer *, 
00059             doublereal *, integer *), dlaset_(char *, integer *, 
00060             integer *, doublereal *, doublereal *, doublereal *, integer *), dorgql_(integer *, integer *, integer *, doublereal *, 
00061             integer *, doublereal *, doublereal *, integer *, integer *);
00062     extern doublereal dlansy_(char *, char *, integer *, doublereal *, 
00063             integer *, doublereal *);
00064 
00065 
00066 /*  -- LAPACK test routine (version 3.1) -- */
00067 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00068 /*     November 2006 */
00069 
00070 /*     .. Scalar Arguments .. */
00071 /*     .. */
00072 /*     .. Array Arguments .. */
00073 /*     .. */
00074 
00075 /*  Purpose */
00076 /*  ======= */
00077 
00078 /*  DQLT01 tests DGEQLF, which computes the QL factorization of an m-by-n */
00079 /*  matrix A, and partially tests DORGQL which forms the m-by-m */
00080 /*  orthogonal matrix Q. */
00081 
00082 /*  DQLT01 compares L with Q'*A, and checks that Q is orthogonal. */
00083 
00084 /*  Arguments */
00085 /*  ========= */
00086 
00087 /*  M       (input) INTEGER */
00088 /*          The number of rows of the matrix A.  M >= 0. */
00089 
00090 /*  N       (input) INTEGER */
00091 /*          The number of columns of the matrix A.  N >= 0. */
00092 
00093 /*  A       (input) DOUBLE PRECISION array, dimension (LDA,N) */
00094 /*          The m-by-n matrix A. */
00095 
00096 /*  AF      (output) DOUBLE PRECISION array, dimension (LDA,N) */
00097 /*          Details of the QL factorization of A, as returned by DGEQLF. */
00098 /*          See DGEQLF for further details. */
00099 
00100 /*  Q       (output) DOUBLE PRECISION array, dimension (LDA,M) */
00101 /*          The m-by-m orthogonal matrix Q. */
00102 
00103 /*  L       (workspace) DOUBLE PRECISION array, dimension (LDA,max(M,N)) */
00104 
00105 /*  LDA     (input) INTEGER */
00106 /*          The leading dimension of the arrays A, AF, Q and R. */
00107 /*          LDA >= max(M,N). */
00108 
00109 /*  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N)) */
00110 /*          The scalar factors of the elementary reflectors, as returned */
00111 /*          by DGEQLF. */
00112 
00113 /*  WORK    (workspace) DOUBLE PRECISION array, dimension (LWORK) */
00114 
00115 /*  LWORK   (input) INTEGER */
00116 /*          The dimension of the array WORK. */
00117 
00118 /*  RWORK   (workspace) DOUBLE PRECISION array, dimension (M) */
00119 
00120 /*  RESULT  (output) DOUBLE PRECISION array, dimension (2) */
00121 /*          The test ratios: */
00122 /*          RESULT(1) = norm( L - Q'*A ) / ( M * norm(A) * EPS ) */
00123 /*          RESULT(2) = norm( I - Q'*Q ) / ( M * EPS ) */
00124 
00125 /*  ===================================================================== */
00126 
00127 /*     .. Parameters .. */
00128 /*     .. */
00129 /*     .. Local Scalars .. */
00130 /*     .. */
00131 /*     .. External Functions .. */
00132 /*     .. */
00133 /*     .. External Subroutines .. */
00134 /*     .. */
00135 /*     .. Intrinsic Functions .. */
00136 /*     .. */
00137 /*     .. Scalars in Common .. */
00138 /*     .. */
00139 /*     .. Common blocks .. */
00140 /*     .. */
00141 /*     .. Executable Statements .. */
00142 
00143     /* Parameter adjustments */
00144     l_dim1 = *lda;
00145     l_offset = 1 + l_dim1;
00146     l -= l_offset;
00147     q_dim1 = *lda;
00148     q_offset = 1 + q_dim1;
00149     q -= q_offset;
00150     af_dim1 = *lda;
00151     af_offset = 1 + af_dim1;
00152     af -= af_offset;
00153     a_dim1 = *lda;
00154     a_offset = 1 + a_dim1;
00155     a -= a_offset;
00156     --tau;
00157     --work;
00158     --rwork;
00159     --result;
00160 
00161     /* Function Body */
00162     minmn = min(*m,*n);
00163     eps = dlamch_("Epsilon");
00164 
00165 /*     Copy the matrix A to the array AF. */
00166 
00167     dlacpy_("Full", m, n, &a[a_offset], lda, &af[af_offset], lda);
00168 
00169 /*     Factorize the matrix A in the array AF. */
00170 
00171     s_copy(srnamc_1.srnamt, "DGEQLF", (ftnlen)32, (ftnlen)6);
00172     dgeqlf_(m, n, &af[af_offset], lda, &tau[1], &work[1], lwork, &info);
00173 
00174 /*     Copy details of Q */
00175 
00176     dlaset_("Full", m, m, &c_b6, &c_b6, &q[q_offset], lda);
00177     if (*m >= *n) {
00178         if (*n < *m && *n > 0) {
00179             i__1 = *m - *n;
00180             dlacpy_("Full", &i__1, n, &af[af_offset], lda, &q[(*m - *n + 1) * 
00181                     q_dim1 + 1], lda);
00182         }
00183         if (*n > 1) {
00184             i__1 = *n - 1;
00185             i__2 = *n - 1;
00186             dlacpy_("Upper", &i__1, &i__2, &af[*m - *n + 1 + (af_dim1 << 1)], 
00187                     lda, &q[*m - *n + 1 + (*m - *n + 2) * q_dim1], lda);
00188         }
00189     } else {
00190         if (*m > 1) {
00191             i__1 = *m - 1;
00192             i__2 = *m - 1;
00193             dlacpy_("Upper", &i__1, &i__2, &af[(*n - *m + 2) * af_dim1 + 1], 
00194                     lda, &q[(q_dim1 << 1) + 1], lda);
00195         }
00196     }
00197 
00198 /*     Generate the m-by-m matrix Q */
00199 
00200     s_copy(srnamc_1.srnamt, "DORGQL", (ftnlen)32, (ftnlen)6);
00201     dorgql_(m, m, &minmn, &q[q_offset], lda, &tau[1], &work[1], lwork, &info);
00202 
00203 /*     Copy L */
00204 
00205     dlaset_("Full", m, n, &c_b13, &c_b13, &l[l_offset], lda);
00206     if (*m >= *n) {
00207         if (*n > 0) {
00208             dlacpy_("Lower", n, n, &af[*m - *n + 1 + af_dim1], lda, &l[*m - *
00209                     n + 1 + l_dim1], lda);
00210         }
00211     } else {
00212         if (*n > *m && *m > 0) {
00213             i__1 = *n - *m;
00214             dlacpy_("Full", m, &i__1, &af[af_offset], lda, &l[l_offset], lda);
00215         }
00216         if (*m > 0) {
00217             dlacpy_("Lower", m, m, &af[(*n - *m + 1) * af_dim1 + 1], lda, &l[(
00218                     *n - *m + 1) * l_dim1 + 1], lda);
00219         }
00220     }
00221 
00222 /*     Compute L - Q'*A */
00223 
00224     dgemm_("Transpose", "No transpose", m, n, m, &c_b20, &q[q_offset], lda, &
00225             a[a_offset], lda, &c_b21, &l[l_offset], lda);
00226 
00227 /*     Compute norm( L - Q'*A ) / ( M * norm(A) * EPS ) . */
00228 
00229     anorm = dlange_("1", m, n, &a[a_offset], lda, &rwork[1]);
00230     resid = dlange_("1", m, n, &l[l_offset], lda, &rwork[1]);
00231     if (anorm > 0.) {
00232         result[1] = resid / (doublereal) max(1,*m) / anorm / eps;
00233     } else {
00234         result[1] = 0.;
00235     }
00236 
00237 /*     Compute I - Q'*Q */
00238 
00239     dlaset_("Full", m, m, &c_b13, &c_b21, &l[l_offset], lda);
00240     dsyrk_("Upper", "Transpose", m, m, &c_b20, &q[q_offset], lda, &c_b21, &l[
00241             l_offset], lda);
00242 
00243 /*     Compute norm( I - Q'*Q ) / ( M * EPS ) . */
00244 
00245     resid = dlansy_("1", "Upper", m, &l[l_offset], lda, &rwork[1]);
00246 
00247     result[2] = resid / (doublereal) max(1,*m) / eps;
00248 
00249     return 0;
00250 
00251 /*     End of DQLT01 */
00252 
00253 } /* dqlt01_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:48