00001 /* dptts2.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int dptts2_(integer *n, integer *nrhs, doublereal *d__, 00017 doublereal *e, doublereal *b, integer *ldb) 00018 { 00019 /* System generated locals */ 00020 integer b_dim1, b_offset, i__1, i__2; 00021 doublereal d__1; 00022 00023 /* Local variables */ 00024 integer i__, j; 00025 extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 00026 integer *); 00027 00028 00029 /* -- LAPACK routine (version 3.2) -- */ 00030 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00031 /* November 2006 */ 00032 00033 /* .. Scalar Arguments .. */ 00034 /* .. */ 00035 /* .. Array Arguments .. */ 00036 /* .. */ 00037 00038 /* Purpose */ 00039 /* ======= */ 00040 00041 /* DPTTS2 solves a tridiagonal system of the form */ 00042 /* A * X = B */ 00043 /* using the L*D*L' factorization of A computed by DPTTRF. D is a */ 00044 /* diagonal matrix specified in the vector D, L is a unit bidiagonal */ 00045 /* matrix whose subdiagonal is specified in the vector E, and X and B */ 00046 /* are N by NRHS matrices. */ 00047 00048 /* Arguments */ 00049 /* ========= */ 00050 00051 /* N (input) INTEGER */ 00052 /* The order of the tridiagonal matrix A. N >= 0. */ 00053 00054 /* NRHS (input) INTEGER */ 00055 /* The number of right hand sides, i.e., the number of columns */ 00056 /* of the matrix B. NRHS >= 0. */ 00057 00058 /* D (input) DOUBLE PRECISION array, dimension (N) */ 00059 /* The n diagonal elements of the diagonal matrix D from the */ 00060 /* L*D*L' factorization of A. */ 00061 00062 /* E (input) DOUBLE PRECISION array, dimension (N-1) */ 00063 /* The (n-1) subdiagonal elements of the unit bidiagonal factor */ 00064 /* L from the L*D*L' factorization of A. E can also be regarded */ 00065 /* as the superdiagonal of the unit bidiagonal factor U from the */ 00066 /* factorization A = U'*D*U. */ 00067 00068 /* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */ 00069 /* On entry, the right hand side vectors B for the system of */ 00070 /* linear equations. */ 00071 /* On exit, the solution vectors, X. */ 00072 00073 /* LDB (input) INTEGER */ 00074 /* The leading dimension of the array B. LDB >= max(1,N). */ 00075 00076 /* ===================================================================== */ 00077 00078 /* .. Local Scalars .. */ 00079 /* .. */ 00080 /* .. External Subroutines .. */ 00081 /* .. */ 00082 /* .. Executable Statements .. */ 00083 00084 /* Quick return if possible */ 00085 00086 /* Parameter adjustments */ 00087 --d__; 00088 --e; 00089 b_dim1 = *ldb; 00090 b_offset = 1 + b_dim1; 00091 b -= b_offset; 00092 00093 /* Function Body */ 00094 if (*n <= 1) { 00095 if (*n == 1) { 00096 d__1 = 1. / d__[1]; 00097 dscal_(nrhs, &d__1, &b[b_offset], ldb); 00098 } 00099 return 0; 00100 } 00101 00102 /* Solve A * X = B using the factorization A = L*D*L', */ 00103 /* overwriting each right hand side vector with its solution. */ 00104 00105 i__1 = *nrhs; 00106 for (j = 1; j <= i__1; ++j) { 00107 00108 /* Solve L * x = b. */ 00109 00110 i__2 = *n; 00111 for (i__ = 2; i__ <= i__2; ++i__) { 00112 b[i__ + j * b_dim1] -= b[i__ - 1 + j * b_dim1] * e[i__ - 1]; 00113 /* L10: */ 00114 } 00115 00116 /* Solve D * L' * x = b. */ 00117 00118 b[*n + j * b_dim1] /= d__[*n]; 00119 for (i__ = *n - 1; i__ >= 1; --i__) { 00120 b[i__ + j * b_dim1] = b[i__ + j * b_dim1] / d__[i__] - b[i__ + 1 00121 + j * b_dim1] * e[i__]; 00122 /* L20: */ 00123 } 00124 /* L30: */ 00125 } 00126 00127 return 0; 00128 00129 /* End of DPTTS2 */ 00130 00131 } /* dptts2_ */