00001 /* dptt02.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static doublereal c_b4 = -1.; 00019 static doublereal c_b5 = 1.; 00020 static integer c__1 = 1; 00021 00022 /* Subroutine */ int dptt02_(integer *n, integer *nrhs, doublereal *d__, 00023 doublereal *e, doublereal *x, integer *ldx, doublereal *b, integer * 00024 ldb, doublereal *resid) 00025 { 00026 /* System generated locals */ 00027 integer b_dim1, b_offset, x_dim1, x_offset, i__1; 00028 doublereal d__1, d__2; 00029 00030 /* Local variables */ 00031 integer j; 00032 doublereal eps; 00033 extern doublereal dasum_(integer *, doublereal *, integer *); 00034 doublereal anorm, bnorm, xnorm; 00035 extern doublereal dlamch_(char *); 00036 extern /* Subroutine */ int dlaptm_(integer *, integer *, doublereal *, 00037 doublereal *, doublereal *, doublereal *, integer *, doublereal *, 00038 doublereal *, integer *); 00039 extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *); 00040 00041 00042 /* -- LAPACK test routine (version 3.1) -- */ 00043 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00044 /* November 2006 */ 00045 00046 /* .. Scalar Arguments .. */ 00047 /* .. */ 00048 /* .. Array Arguments .. */ 00049 /* .. */ 00050 00051 /* Purpose */ 00052 /* ======= */ 00053 00054 /* DPTT02 computes the residual for the solution to a symmetric */ 00055 /* tridiagonal system of equations: */ 00056 /* RESID = norm(B - A*X) / (norm(A) * norm(X) * EPS), */ 00057 /* where EPS is the machine epsilon. */ 00058 00059 /* Arguments */ 00060 /* ========= */ 00061 00062 /* N (input) INTEGTER */ 00063 /* The order of the matrix A. */ 00064 00065 /* NRHS (input) INTEGER */ 00066 /* The number of right hand sides, i.e., the number of columns */ 00067 /* of the matrices B and X. NRHS >= 0. */ 00068 00069 /* D (input) DOUBLE PRECISION array, dimension (N) */ 00070 /* The n diagonal elements of the tridiagonal matrix A. */ 00071 00072 /* E (input) DOUBLE PRECISION array, dimension (N-1) */ 00073 /* The (n-1) subdiagonal elements of the tridiagonal matrix A. */ 00074 00075 /* X (input) DOUBLE PRECISION array, dimension (LDX,NRHS) */ 00076 /* The n by nrhs matrix of solution vectors X. */ 00077 00078 /* LDX (input) INTEGER */ 00079 /* The leading dimension of the array X. LDX >= max(1,N). */ 00080 00081 /* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */ 00082 /* On entry, the n by nrhs matrix of right hand side vectors B. */ 00083 /* On exit, B is overwritten with the difference B - A*X. */ 00084 00085 /* LDB (input) INTEGER */ 00086 /* The leading dimension of the array B. LDB >= max(1,N). */ 00087 00088 /* RESID (output) DOUBLE PRECISION */ 00089 /* norm(B - A*X) / (norm(A) * norm(X) * EPS) */ 00090 00091 /* ===================================================================== */ 00092 00093 /* .. Parameters .. */ 00094 /* .. */ 00095 /* .. Local Scalars .. */ 00096 /* .. */ 00097 /* .. External Functions .. */ 00098 /* .. */ 00099 /* .. Intrinsic Functions .. */ 00100 /* .. */ 00101 /* .. External Subroutines .. */ 00102 /* .. */ 00103 /* .. Executable Statements .. */ 00104 00105 /* Quick return if possible */ 00106 00107 /* Parameter adjustments */ 00108 --d__; 00109 --e; 00110 x_dim1 = *ldx; 00111 x_offset = 1 + x_dim1; 00112 x -= x_offset; 00113 b_dim1 = *ldb; 00114 b_offset = 1 + b_dim1; 00115 b -= b_offset; 00116 00117 /* Function Body */ 00118 if (*n <= 0) { 00119 *resid = 0.; 00120 return 0; 00121 } 00122 00123 /* Compute the 1-norm of the tridiagonal matrix A. */ 00124 00125 anorm = dlanst_("1", n, &d__[1], &e[1]); 00126 00127 /* Exit with RESID = 1/EPS if ANORM = 0. */ 00128 00129 eps = dlamch_("Epsilon"); 00130 if (anorm <= 0.) { 00131 *resid = 1. / eps; 00132 return 0; 00133 } 00134 00135 /* Compute B - A*X. */ 00136 00137 dlaptm_(n, nrhs, &c_b4, &d__[1], &e[1], &x[x_offset], ldx, &c_b5, &b[ 00138 b_offset], ldb); 00139 00140 /* Compute the maximum over the number of right hand sides of */ 00141 /* norm(B - A*X) / ( norm(A) * norm(X) * EPS ). */ 00142 00143 *resid = 0.; 00144 i__1 = *nrhs; 00145 for (j = 1; j <= i__1; ++j) { 00146 bnorm = dasum_(n, &b[j * b_dim1 + 1], &c__1); 00147 xnorm = dasum_(n, &x[j * x_dim1 + 1], &c__1); 00148 if (xnorm <= 0.) { 00149 *resid = 1. / eps; 00150 } else { 00151 /* Computing MAX */ 00152 d__1 = *resid, d__2 = bnorm / anorm / xnorm / eps; 00153 *resid = max(d__1,d__2); 00154 } 00155 /* L10: */ 00156 } 00157 00158 return 0; 00159 00160 /* End of DPTT02 */ 00161 00162 } /* dptt02_ */