00001 /* dpteqr.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static doublereal c_b7 = 0.; 00019 static doublereal c_b8 = 1.; 00020 static integer c__0 = 0; 00021 static integer c__1 = 1; 00022 00023 /* Subroutine */ int dpteqr_(char *compz, integer *n, doublereal *d__, 00024 doublereal *e, doublereal *z__, integer *ldz, doublereal *work, 00025 integer *info) 00026 { 00027 /* System generated locals */ 00028 integer z_dim1, z_offset, i__1; 00029 00030 /* Builtin functions */ 00031 double sqrt(doublereal); 00032 00033 /* Local variables */ 00034 doublereal c__[1] /* was [1][1] */; 00035 integer i__; 00036 doublereal vt[1] /* was [1][1] */; 00037 integer nru; 00038 extern logical lsame_(char *, char *); 00039 extern /* Subroutine */ int dlaset_(char *, integer *, integer *, 00040 doublereal *, doublereal *, doublereal *, integer *), 00041 xerbla_(char *, integer *), dbdsqr_(char *, integer *, 00042 integer *, integer *, integer *, doublereal *, doublereal *, 00043 doublereal *, integer *, doublereal *, integer *, doublereal *, 00044 integer *, doublereal *, integer *); 00045 integer icompz; 00046 extern /* Subroutine */ int dpttrf_(integer *, doublereal *, doublereal *, 00047 integer *); 00048 00049 00050 /* -- LAPACK routine (version 3.2) -- */ 00051 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00052 /* November 2006 */ 00053 00054 /* .. Scalar Arguments .. */ 00055 /* .. */ 00056 /* .. Array Arguments .. */ 00057 /* .. */ 00058 00059 /* Purpose */ 00060 /* ======= */ 00061 00062 /* DPTEQR computes all eigenvalues and, optionally, eigenvectors of a */ 00063 /* symmetric positive definite tridiagonal matrix by first factoring the */ 00064 /* matrix using DPTTRF, and then calling DBDSQR to compute the singular */ 00065 /* values of the bidiagonal factor. */ 00066 00067 /* This routine computes the eigenvalues of the positive definite */ 00068 /* tridiagonal matrix to high relative accuracy. This means that if the */ 00069 /* eigenvalues range over many orders of magnitude in size, then the */ 00070 /* small eigenvalues and corresponding eigenvectors will be computed */ 00071 /* more accurately than, for example, with the standard QR method. */ 00072 00073 /* The eigenvectors of a full or band symmetric positive definite matrix */ 00074 /* can also be found if DSYTRD, DSPTRD, or DSBTRD has been used to */ 00075 /* reduce this matrix to tridiagonal form. (The reduction to tridiagonal */ 00076 /* form, however, may preclude the possibility of obtaining high */ 00077 /* relative accuracy in the small eigenvalues of the original matrix, if */ 00078 /* these eigenvalues range over many orders of magnitude.) */ 00079 00080 /* Arguments */ 00081 /* ========= */ 00082 00083 /* COMPZ (input) CHARACTER*1 */ 00084 /* = 'N': Compute eigenvalues only. */ 00085 /* = 'V': Compute eigenvectors of original symmetric */ 00086 /* matrix also. Array Z contains the orthogonal */ 00087 /* matrix used to reduce the original matrix to */ 00088 /* tridiagonal form. */ 00089 /* = 'I': Compute eigenvectors of tridiagonal matrix also. */ 00090 00091 /* N (input) INTEGER */ 00092 /* The order of the matrix. N >= 0. */ 00093 00094 /* D (input/output) DOUBLE PRECISION array, dimension (N) */ 00095 /* On entry, the n diagonal elements of the tridiagonal */ 00096 /* matrix. */ 00097 /* On normal exit, D contains the eigenvalues, in descending */ 00098 /* order. */ 00099 00100 /* E (input/output) DOUBLE PRECISION array, dimension (N-1) */ 00101 /* On entry, the (n-1) subdiagonal elements of the tridiagonal */ 00102 /* matrix. */ 00103 /* On exit, E has been destroyed. */ 00104 00105 /* Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N) */ 00106 /* On entry, if COMPZ = 'V', the orthogonal matrix used in the */ 00107 /* reduction to tridiagonal form. */ 00108 /* On exit, if COMPZ = 'V', the orthonormal eigenvectors of the */ 00109 /* original symmetric matrix; */ 00110 /* if COMPZ = 'I', the orthonormal eigenvectors of the */ 00111 /* tridiagonal matrix. */ 00112 /* If INFO > 0 on exit, Z contains the eigenvectors associated */ 00113 /* with only the stored eigenvalues. */ 00114 /* If COMPZ = 'N', then Z is not referenced. */ 00115 00116 /* LDZ (input) INTEGER */ 00117 /* The leading dimension of the array Z. LDZ >= 1, and if */ 00118 /* COMPZ = 'V' or 'I', LDZ >= max(1,N). */ 00119 00120 /* WORK (workspace) DOUBLE PRECISION array, dimension (4*N) */ 00121 00122 /* INFO (output) INTEGER */ 00123 /* = 0: successful exit. */ 00124 /* < 0: if INFO = -i, the i-th argument had an illegal value. */ 00125 /* > 0: if INFO = i, and i is: */ 00126 /* <= N the Cholesky factorization of the matrix could */ 00127 /* not be performed because the i-th principal minor */ 00128 /* was not positive definite. */ 00129 /* > N the SVD algorithm failed to converge; */ 00130 /* if INFO = N+i, i off-diagonal elements of the */ 00131 /* bidiagonal factor did not converge to zero. */ 00132 00133 /* ===================================================================== */ 00134 00135 /* .. Parameters .. */ 00136 /* .. */ 00137 /* .. External Functions .. */ 00138 /* .. */ 00139 /* .. External Subroutines .. */ 00140 /* .. */ 00141 /* .. Local Arrays .. */ 00142 /* .. */ 00143 /* .. Local Scalars .. */ 00144 /* .. */ 00145 /* .. Intrinsic Functions .. */ 00146 /* .. */ 00147 /* .. Executable Statements .. */ 00148 00149 /* Test the input parameters. */ 00150 00151 /* Parameter adjustments */ 00152 --d__; 00153 --e; 00154 z_dim1 = *ldz; 00155 z_offset = 1 + z_dim1; 00156 z__ -= z_offset; 00157 --work; 00158 00159 /* Function Body */ 00160 *info = 0; 00161 00162 if (lsame_(compz, "N")) { 00163 icompz = 0; 00164 } else if (lsame_(compz, "V")) { 00165 icompz = 1; 00166 } else if (lsame_(compz, "I")) { 00167 icompz = 2; 00168 } else { 00169 icompz = -1; 00170 } 00171 if (icompz < 0) { 00172 *info = -1; 00173 } else if (*n < 0) { 00174 *info = -2; 00175 } else if (*ldz < 1 || icompz > 0 && *ldz < max(1,*n)) { 00176 *info = -6; 00177 } 00178 if (*info != 0) { 00179 i__1 = -(*info); 00180 xerbla_("DPTEQR", &i__1); 00181 return 0; 00182 } 00183 00184 /* Quick return if possible */ 00185 00186 if (*n == 0) { 00187 return 0; 00188 } 00189 00190 if (*n == 1) { 00191 if (icompz > 0) { 00192 z__[z_dim1 + 1] = 1.; 00193 } 00194 return 0; 00195 } 00196 if (icompz == 2) { 00197 dlaset_("Full", n, n, &c_b7, &c_b8, &z__[z_offset], ldz); 00198 } 00199 00200 /* Call DPTTRF to factor the matrix. */ 00201 00202 dpttrf_(n, &d__[1], &e[1], info); 00203 if (*info != 0) { 00204 return 0; 00205 } 00206 i__1 = *n; 00207 for (i__ = 1; i__ <= i__1; ++i__) { 00208 d__[i__] = sqrt(d__[i__]); 00209 /* L10: */ 00210 } 00211 i__1 = *n - 1; 00212 for (i__ = 1; i__ <= i__1; ++i__) { 00213 e[i__] *= d__[i__]; 00214 /* L20: */ 00215 } 00216 00217 /* Call DBDSQR to compute the singular values/vectors of the */ 00218 /* bidiagonal factor. */ 00219 00220 if (icompz > 0) { 00221 nru = *n; 00222 } else { 00223 nru = 0; 00224 } 00225 dbdsqr_("Lower", n, &c__0, &nru, &c__0, &d__[1], &e[1], vt, &c__1, &z__[ 00226 z_offset], ldz, c__, &c__1, &work[1], info); 00227 00228 /* Square the singular values. */ 00229 00230 if (*info == 0) { 00231 i__1 = *n; 00232 for (i__ = 1; i__ <= i__1; ++i__) { 00233 d__[i__] *= d__[i__]; 00234 /* L30: */ 00235 } 00236 } else { 00237 *info = *n + *info; 00238 } 00239 00240 return 0; 00241 00242 /* End of DPTEQR */ 00243 00244 } /* dpteqr_ */