00001 /* dppt05.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 00020 /* Subroutine */ int dppt05_(char *uplo, integer *n, integer *nrhs, 00021 doublereal *ap, doublereal *b, integer *ldb, doublereal *x, integer * 00022 ldx, doublereal *xact, integer *ldxact, doublereal *ferr, doublereal * 00023 berr, doublereal *reslts) 00024 { 00025 /* System generated locals */ 00026 integer b_dim1, b_offset, x_dim1, x_offset, xact_dim1, xact_offset, i__1, 00027 i__2, i__3; 00028 doublereal d__1, d__2, d__3; 00029 00030 /* Local variables */ 00031 integer i__, j, k, jc; 00032 doublereal eps, tmp, diff, axbi; 00033 integer imax; 00034 doublereal unfl, ovfl; 00035 extern logical lsame_(char *, char *); 00036 logical upper; 00037 doublereal xnorm; 00038 extern doublereal dlamch_(char *); 00039 extern integer idamax_(integer *, doublereal *, integer *); 00040 doublereal errbnd; 00041 00042 00043 /* -- LAPACK test routine (version 3.1) -- */ 00044 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00045 /* November 2006 */ 00046 00047 /* .. Scalar Arguments .. */ 00048 /* .. */ 00049 /* .. Array Arguments .. */ 00050 /* .. */ 00051 00052 /* Purpose */ 00053 /* ======= */ 00054 00055 /* DPPT05 tests the error bounds from iterative refinement for the */ 00056 /* computed solution to a system of equations A*X = B, where A is a */ 00057 /* symmetric matrix in packed storage format. */ 00058 00059 /* RESLTS(1) = test of the error bound */ 00060 /* = norm(X - XACT) / ( norm(X) * FERR ) */ 00061 00062 /* A large value is returned if this ratio is not less than one. */ 00063 00064 /* RESLTS(2) = residual from the iterative refinement routine */ 00065 /* = the maximum of BERR / ( (n+1)*EPS + (*) ), where */ 00066 /* (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i ) */ 00067 00068 /* Arguments */ 00069 /* ========= */ 00070 00071 /* UPLO (input) CHARACTER*1 */ 00072 /* Specifies whether the upper or lower triangular part of the */ 00073 /* symmetric matrix A is stored. */ 00074 /* = 'U': Upper triangular */ 00075 /* = 'L': Lower triangular */ 00076 00077 /* N (input) INTEGER */ 00078 /* The number of rows of the matrices X, B, and XACT, and the */ 00079 /* order of the matrix A. N >= 0. */ 00080 00081 /* NRHS (input) INTEGER */ 00082 /* The number of columns of the matrices X, B, and XACT. */ 00083 /* NRHS >= 0. */ 00084 00085 /* AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) */ 00086 /* The upper or lower triangle of the symmetric matrix A, packed */ 00087 /* columnwise in a linear array. The j-th column of A is stored */ 00088 /* in the array AP as follows: */ 00089 /* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */ 00090 /* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */ 00091 00092 /* B (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */ 00093 /* The right hand side vectors for the system of linear */ 00094 /* equations. */ 00095 00096 /* LDB (input) INTEGER */ 00097 /* The leading dimension of the array B. LDB >= max(1,N). */ 00098 00099 /* X (input) DOUBLE PRECISION array, dimension (LDX,NRHS) */ 00100 /* The computed solution vectors. Each vector is stored as a */ 00101 /* column of the matrix X. */ 00102 00103 /* LDX (input) INTEGER */ 00104 /* The leading dimension of the array X. LDX >= max(1,N). */ 00105 00106 /* XACT (input) DOUBLE PRECISION array, dimension (LDX,NRHS) */ 00107 /* The exact solution vectors. Each vector is stored as a */ 00108 /* column of the matrix XACT. */ 00109 00110 /* LDXACT (input) INTEGER */ 00111 /* The leading dimension of the array XACT. LDXACT >= max(1,N). */ 00112 00113 /* FERR (input) DOUBLE PRECISION array, dimension (NRHS) */ 00114 /* The estimated forward error bounds for each solution vector */ 00115 /* X. If XTRUE is the true solution, FERR bounds the magnitude */ 00116 /* of the largest entry in (X - XTRUE) divided by the magnitude */ 00117 /* of the largest entry in X. */ 00118 00119 /* BERR (input) DOUBLE PRECISION array, dimension (NRHS) */ 00120 /* The componentwise relative backward error of each solution */ 00121 /* vector (i.e., the smallest relative change in any entry of A */ 00122 /* or B that makes X an exact solution). */ 00123 00124 /* RESLTS (output) DOUBLE PRECISION array, dimension (2) */ 00125 /* The maximum over the NRHS solution vectors of the ratios: */ 00126 /* RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR ) */ 00127 /* RESLTS(2) = BERR / ( (n+1)*EPS + (*) ) */ 00128 00129 /* ===================================================================== */ 00130 00131 /* .. Parameters .. */ 00132 /* .. */ 00133 /* .. Local Scalars .. */ 00134 /* .. */ 00135 /* .. External Functions .. */ 00136 /* .. */ 00137 /* .. Intrinsic Functions .. */ 00138 /* .. */ 00139 /* .. Executable Statements .. */ 00140 00141 /* Quick exit if N = 0 or NRHS = 0. */ 00142 00143 /* Parameter adjustments */ 00144 --ap; 00145 b_dim1 = *ldb; 00146 b_offset = 1 + b_dim1; 00147 b -= b_offset; 00148 x_dim1 = *ldx; 00149 x_offset = 1 + x_dim1; 00150 x -= x_offset; 00151 xact_dim1 = *ldxact; 00152 xact_offset = 1 + xact_dim1; 00153 xact -= xact_offset; 00154 --ferr; 00155 --berr; 00156 --reslts; 00157 00158 /* Function Body */ 00159 if (*n <= 0 || *nrhs <= 0) { 00160 reslts[1] = 0.; 00161 reslts[2] = 0.; 00162 return 0; 00163 } 00164 00165 eps = dlamch_("Epsilon"); 00166 unfl = dlamch_("Safe minimum"); 00167 ovfl = 1. / unfl; 00168 upper = lsame_(uplo, "U"); 00169 00170 /* Test 1: Compute the maximum of */ 00171 /* norm(X - XACT) / ( norm(X) * FERR ) */ 00172 /* over all the vectors X and XACT using the infinity-norm. */ 00173 00174 errbnd = 0.; 00175 i__1 = *nrhs; 00176 for (j = 1; j <= i__1; ++j) { 00177 imax = idamax_(n, &x[j * x_dim1 + 1], &c__1); 00178 /* Computing MAX */ 00179 d__2 = (d__1 = x[imax + j * x_dim1], abs(d__1)); 00180 xnorm = max(d__2,unfl); 00181 diff = 0.; 00182 i__2 = *n; 00183 for (i__ = 1; i__ <= i__2; ++i__) { 00184 /* Computing MAX */ 00185 d__2 = diff, d__3 = (d__1 = x[i__ + j * x_dim1] - xact[i__ + j * 00186 xact_dim1], abs(d__1)); 00187 diff = max(d__2,d__3); 00188 /* L10: */ 00189 } 00190 00191 if (xnorm > 1.) { 00192 goto L20; 00193 } else if (diff <= ovfl * xnorm) { 00194 goto L20; 00195 } else { 00196 errbnd = 1. / eps; 00197 goto L30; 00198 } 00199 00200 L20: 00201 if (diff / xnorm <= ferr[j]) { 00202 /* Computing MAX */ 00203 d__1 = errbnd, d__2 = diff / xnorm / ferr[j]; 00204 errbnd = max(d__1,d__2); 00205 } else { 00206 errbnd = 1. / eps; 00207 } 00208 L30: 00209 ; 00210 } 00211 reslts[1] = errbnd; 00212 00213 /* Test 2: Compute the maximum of BERR / ( (n+1)*EPS + (*) ), where */ 00214 /* (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i ) */ 00215 00216 i__1 = *nrhs; 00217 for (k = 1; k <= i__1; ++k) { 00218 i__2 = *n; 00219 for (i__ = 1; i__ <= i__2; ++i__) { 00220 tmp = (d__1 = b[i__ + k * b_dim1], abs(d__1)); 00221 if (upper) { 00222 jc = (i__ - 1) * i__ / 2; 00223 i__3 = i__; 00224 for (j = 1; j <= i__3; ++j) { 00225 tmp += (d__1 = ap[jc + j], abs(d__1)) * (d__2 = x[j + k * 00226 x_dim1], abs(d__2)); 00227 /* L40: */ 00228 } 00229 jc += i__; 00230 i__3 = *n; 00231 for (j = i__ + 1; j <= i__3; ++j) { 00232 tmp += (d__1 = ap[jc], abs(d__1)) * (d__2 = x[j + k * 00233 x_dim1], abs(d__2)); 00234 jc += j; 00235 /* L50: */ 00236 } 00237 } else { 00238 jc = i__; 00239 i__3 = i__ - 1; 00240 for (j = 1; j <= i__3; ++j) { 00241 tmp += (d__1 = ap[jc], abs(d__1)) * (d__2 = x[j + k * 00242 x_dim1], abs(d__2)); 00243 jc = jc + *n - j; 00244 /* L60: */ 00245 } 00246 i__3 = *n; 00247 for (j = i__; j <= i__3; ++j) { 00248 tmp += (d__1 = ap[jc + j - i__], abs(d__1)) * (d__2 = x[j 00249 + k * x_dim1], abs(d__2)); 00250 /* L70: */ 00251 } 00252 } 00253 if (i__ == 1) { 00254 axbi = tmp; 00255 } else { 00256 axbi = min(axbi,tmp); 00257 } 00258 /* L80: */ 00259 } 00260 /* Computing MAX */ 00261 d__1 = axbi, d__2 = (*n + 1) * unfl; 00262 tmp = berr[k] / ((*n + 1) * eps + (*n + 1) * unfl / max(d__1,d__2)); 00263 if (k == 1) { 00264 reslts[2] = tmp; 00265 } else { 00266 reslts[2] = max(reslts[2],tmp); 00267 } 00268 /* L90: */ 00269 } 00270 00271 return 0; 00272 00273 /* End of DPPT05 */ 00274 00275 } /* dppt05_ */