dpftrf.c
Go to the documentation of this file.
00001 /* dpftrf.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static doublereal c_b12 = 1.;
00019 static doublereal c_b15 = -1.;
00020 
00021 /* Subroutine */ int dpftrf_(char *transr, char *uplo, integer *n, doublereal 
00022         *a, integer *info)
00023 {
00024     /* System generated locals */
00025     integer i__1, i__2;
00026 
00027     /* Local variables */
00028     integer k, n1, n2;
00029     logical normaltransr;
00030     extern logical lsame_(char *, char *);
00031     logical lower;
00032     extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, 
00033             integer *, integer *, doublereal *, doublereal *, integer *, 
00034             doublereal *, integer *), dsyrk_(
00035             char *, char *, integer *, integer *, doublereal *, doublereal *, 
00036             integer *, doublereal *, doublereal *, integer *),
00037              xerbla_(char *, integer *);
00038     logical nisodd;
00039     extern /* Subroutine */ int dpotrf_(char *, integer *, doublereal *, 
00040             integer *, integer *);
00041 
00042 
00043 /*  -- LAPACK routine (version 3.2)                                    -- */
00044 
00045 /*  -- Contributed by Fred Gustavson of the IBM Watson Research Center -- */
00046 /*  -- November 2008                                                   -- */
00047 
00048 /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
00049 /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
00050 
00051 /*     .. */
00052 /*     .. Scalar Arguments .. */
00053 /*     .. */
00054 /*     .. Array Arguments .. */
00055 
00056 /*  Purpose */
00057 /*  ======= */
00058 
00059 /*  DPFTRF computes the Cholesky factorization of a real symmetric */
00060 /*  positive definite matrix A. */
00061 
00062 /*  The factorization has the form */
00063 /*     A = U**T * U,  if UPLO = 'U', or */
00064 /*     A = L  * L**T,  if UPLO = 'L', */
00065 /*  where U is an upper triangular matrix and L is lower triangular. */
00066 
00067 /*  This is the block version of the algorithm, calling Level 3 BLAS. */
00068 
00069 /*  Arguments */
00070 /*  ========= */
00071 
00072 /*  TRANSR    (input) CHARACTER */
00073 /*          = 'N':  The Normal TRANSR of RFP A is stored; */
00074 /*          = 'T':  The Transpose TRANSR of RFP A is stored. */
00075 
00076 /*  UPLO    (input) CHARACTER */
00077 /*          = 'U':  Upper triangle of RFP A is stored; */
00078 /*          = 'L':  Lower triangle of RFP A is stored. */
00079 
00080 /*  N       (input) INTEGER */
00081 /*          The order of the matrix A.  N >= 0. */
00082 
00083 /*  A       (input/output) DOUBLE PRECISION array, dimension ( N*(N+1)/2 ); */
00084 /*          On entry, the symmetric matrix A in RFP format. RFP format is */
00085 /*          described by TRANSR, UPLO, and N as follows: If TRANSR = 'N' */
00086 /*          then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is */
00087 /*          (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'T' then RFP is */
00088 /*          the transpose of RFP A as defined when */
00089 /*          TRANSR = 'N'. The contents of RFP A are defined by UPLO as */
00090 /*          follows: If UPLO = 'U' the RFP A contains the NT elements of */
00091 /*          upper packed A. If UPLO = 'L' the RFP A contains the elements */
00092 /*          of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR = */
00093 /*          'T'. When TRANSR is 'N' the LDA is N+1 when N is even and N */
00094 /*          is odd. See the Note below for more details. */
00095 
00096 /*          On exit, if INFO = 0, the factor U or L from the Cholesky */
00097 /*          factorization RFP A = U**T*U or RFP A = L*L**T. */
00098 
00099 /*  INFO    (output) INTEGER */
00100 /*          = 0:  successful exit */
00101 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00102 /*          > 0:  if INFO = i, the leading minor of order i is not */
00103 /*                positive definite, and the factorization could not be */
00104 /*                completed. */
00105 
00106 /*  Notes */
00107 /*  ===== */
00108 
00109 /*  We first consider Rectangular Full Packed (RFP) Format when N is */
00110 /*  even. We give an example where N = 6. */
00111 
00112 /*      AP is Upper             AP is Lower */
00113 
00114 /*   00 01 02 03 04 05       00 */
00115 /*      11 12 13 14 15       10 11 */
00116 /*         22 23 24 25       20 21 22 */
00117 /*            33 34 35       30 31 32 33 */
00118 /*               44 45       40 41 42 43 44 */
00119 /*                  55       50 51 52 53 54 55 */
00120 
00121 
00122 /*  Let TRANSR = 'N'. RFP holds AP as follows: */
00123 /*  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
00124 /*  three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
00125 /*  the transpose of the first three columns of AP upper. */
00126 /*  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
00127 /*  three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
00128 /*  the transpose of the last three columns of AP lower. */
00129 /*  This covers the case N even and TRANSR = 'N'. */
00130 
00131 /*         RFP A                   RFP A */
00132 
00133 /*        03 04 05                33 43 53 */
00134 /*        13 14 15                00 44 54 */
00135 /*        23 24 25                10 11 55 */
00136 /*        33 34 35                20 21 22 */
00137 /*        00 44 45                30 31 32 */
00138 /*        01 11 55                40 41 42 */
00139 /*        02 12 22                50 51 52 */
00140 
00141 /*  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
00142 /*  transpose of RFP A above. One therefore gets: */
00143 
00144 
00145 /*           RFP A                   RFP A */
00146 
00147 /*     03 13 23 33 00 01 02    33 00 10 20 30 40 50 */
00148 /*     04 14 24 34 44 11 12    43 44 11 21 31 41 51 */
00149 /*     05 15 25 35 45 55 22    53 54 55 22 32 42 52 */
00150 
00151 
00152 /*  We first consider Rectangular Full Packed (RFP) Format when N is */
00153 /*  odd. We give an example where N = 5. */
00154 
00155 /*     AP is Upper                 AP is Lower */
00156 
00157 /*   00 01 02 03 04              00 */
00158 /*      11 12 13 14              10 11 */
00159 /*         22 23 24              20 21 22 */
00160 /*            33 34              30 31 32 33 */
00161 /*               44              40 41 42 43 44 */
00162 
00163 
00164 /*  Let TRANSR = 'N'. RFP holds AP as follows: */
00165 /*  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
00166 /*  three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
00167 /*  the transpose of the first two columns of AP upper. */
00168 /*  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
00169 /*  three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
00170 /*  the transpose of the last two columns of AP lower. */
00171 /*  This covers the case N odd and TRANSR = 'N'. */
00172 
00173 /*         RFP A                   RFP A */
00174 
00175 /*        02 03 04                00 33 43 */
00176 /*        12 13 14                10 11 44 */
00177 /*        22 23 24                20 21 22 */
00178 /*        00 33 34                30 31 32 */
00179 /*        01 11 44                40 41 42 */
00180 
00181 /*  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
00182 /*  transpose of RFP A above. One therefore gets: */
00183 
00184 /*           RFP A                   RFP A */
00185 
00186 /*     02 12 22 00 01             00 10 20 30 40 50 */
00187 /*     03 13 23 33 11             33 11 21 31 41 51 */
00188 /*     04 14 24 34 44             43 44 22 32 42 52 */
00189 
00190 /*  ===================================================================== */
00191 
00192 /*     .. Parameters .. */
00193 /*     .. */
00194 /*     .. Local Scalars .. */
00195 /*     .. */
00196 /*     .. External Functions .. */
00197 /*     .. */
00198 /*     .. External Subroutines .. */
00199 /*     .. */
00200 /*     .. Intrinsic Functions .. */
00201 /*     .. */
00202 /*     .. Executable Statements .. */
00203 
00204 /*     Test the input parameters. */
00205 
00206     *info = 0;
00207     normaltransr = lsame_(transr, "N");
00208     lower = lsame_(uplo, "L");
00209     if (! normaltransr && ! lsame_(transr, "T")) {
00210         *info = -1;
00211     } else if (! lower && ! lsame_(uplo, "U")) {
00212         *info = -2;
00213     } else if (*n < 0) {
00214         *info = -3;
00215     }
00216     if (*info != 0) {
00217         i__1 = -(*info);
00218         xerbla_("DPFTRF", &i__1);
00219         return 0;
00220     }
00221 
00222 /*     Quick return if possible */
00223 
00224     if (*n == 0) {
00225         return 0;
00226     }
00227 
00228 /*     If N is odd, set NISODD = .TRUE. */
00229 /*     If N is even, set K = N/2 and NISODD = .FALSE. */
00230 
00231     if (*n % 2 == 0) {
00232         k = *n / 2;
00233         nisodd = FALSE_;
00234     } else {
00235         nisodd = TRUE_;
00236     }
00237 
00238 /*     Set N1 and N2 depending on LOWER */
00239 
00240     if (lower) {
00241         n2 = *n / 2;
00242         n1 = *n - n2;
00243     } else {
00244         n1 = *n / 2;
00245         n2 = *n - n1;
00246     }
00247 
00248 /*     start execution: there are eight cases */
00249 
00250     if (nisodd) {
00251 
00252 /*        N is odd */
00253 
00254         if (normaltransr) {
00255 
00256 /*           N is odd and TRANSR = 'N' */
00257 
00258             if (lower) {
00259 
00260 /*             SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) ) */
00261 /*             T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0) */
00262 /*             T1 -> a(0), T2 -> a(n), S -> a(n1) */
00263 
00264                 dpotrf_("L", &n1, a, n, info);
00265                 if (*info > 0) {
00266                     return 0;
00267                 }
00268                 dtrsm_("R", "L", "T", "N", &n2, &n1, &c_b12, a, n, &a[n1], n);
00269                 dsyrk_("U", "N", &n2, &n1, &c_b15, &a[n1], n, &c_b12, &a[*n], 
00270                         n);
00271                 dpotrf_("U", &n2, &a[*n], n, info);
00272                 if (*info > 0) {
00273                     *info += n1;
00274                 }
00275 
00276             } else {
00277 
00278 /*             SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1) */
00279 /*             T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0) */
00280 /*             T1 -> a(n2), T2 -> a(n1), S -> a(0) */
00281 
00282                 dpotrf_("L", &n1, &a[n2], n, info);
00283                 if (*info > 0) {
00284                     return 0;
00285                 }
00286                 dtrsm_("L", "L", "N", "N", &n1, &n2, &c_b12, &a[n2], n, a, n);
00287                 dsyrk_("U", "T", &n2, &n1, &c_b15, a, n, &c_b12, &a[n1], n);
00288                 dpotrf_("U", &n2, &a[n1], n, info);
00289                 if (*info > 0) {
00290                     *info += n1;
00291                 }
00292 
00293             }
00294 
00295         } else {
00296 
00297 /*           N is odd and TRANSR = 'T' */
00298 
00299             if (lower) {
00300 
00301 /*              SRPA for LOWER, TRANSPOSE and N is odd */
00302 /*              T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1) */
00303 /*              T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1 */
00304 
00305                 dpotrf_("U", &n1, a, &n1, info);
00306                 if (*info > 0) {
00307                     return 0;
00308                 }
00309                 dtrsm_("L", "U", "T", "N", &n1, &n2, &c_b12, a, &n1, &a[n1 * 
00310                         n1], &n1);
00311                 dsyrk_("L", "T", &n2, &n1, &c_b15, &a[n1 * n1], &n1, &c_b12, &
00312                         a[1], &n1);
00313                 dpotrf_("L", &n2, &a[1], &n1, info);
00314                 if (*info > 0) {
00315                     *info += n1;
00316                 }
00317 
00318             } else {
00319 
00320 /*              SRPA for UPPER, TRANSPOSE and N is odd */
00321 /*              T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0) */
00322 /*              T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2 */
00323 
00324                 dpotrf_("U", &n1, &a[n2 * n2], &n2, info);
00325                 if (*info > 0) {
00326                     return 0;
00327                 }
00328                 dtrsm_("R", "U", "N", "N", &n2, &n1, &c_b12, &a[n2 * n2], &n2, 
00329                          a, &n2);
00330                 dsyrk_("L", "N", &n2, &n1, &c_b15, a, &n2, &c_b12, &a[n1 * n2]
00331 , &n2);
00332                 dpotrf_("L", &n2, &a[n1 * n2], &n2, info);
00333                 if (*info > 0) {
00334                     *info += n1;
00335                 }
00336 
00337             }
00338 
00339         }
00340 
00341     } else {
00342 
00343 /*        N is even */
00344 
00345         if (normaltransr) {
00346 
00347 /*           N is even and TRANSR = 'N' */
00348 
00349             if (lower) {
00350 
00351 /*              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
00352 /*              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0) */
00353 /*              T1 -> a(1), T2 -> a(0), S -> a(k+1) */
00354 
00355                 i__1 = *n + 1;
00356                 dpotrf_("L", &k, &a[1], &i__1, info);
00357                 if (*info > 0) {
00358                     return 0;
00359                 }
00360                 i__1 = *n + 1;
00361                 i__2 = *n + 1;
00362                 dtrsm_("R", "L", "T", "N", &k, &k, &c_b12, &a[1], &i__1, &a[k 
00363                         + 1], &i__2);
00364                 i__1 = *n + 1;
00365                 i__2 = *n + 1;
00366                 dsyrk_("U", "N", &k, &k, &c_b15, &a[k + 1], &i__1, &c_b12, a, 
00367                         &i__2);
00368                 i__1 = *n + 1;
00369                 dpotrf_("U", &k, a, &i__1, info);
00370                 if (*info > 0) {
00371                     *info += k;
00372                 }
00373 
00374             } else {
00375 
00376 /*              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
00377 /*              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0) */
00378 /*              T1 -> a(k+1), T2 -> a(k), S -> a(0) */
00379 
00380                 i__1 = *n + 1;
00381                 dpotrf_("L", &k, &a[k + 1], &i__1, info);
00382                 if (*info > 0) {
00383                     return 0;
00384                 }
00385                 i__1 = *n + 1;
00386                 i__2 = *n + 1;
00387                 dtrsm_("L", "L", "N", "N", &k, &k, &c_b12, &a[k + 1], &i__1, 
00388                         a, &i__2);
00389                 i__1 = *n + 1;
00390                 i__2 = *n + 1;
00391                 dsyrk_("U", "T", &k, &k, &c_b15, a, &i__1, &c_b12, &a[k], &
00392                         i__2);
00393                 i__1 = *n + 1;
00394                 dpotrf_("U", &k, &a[k], &i__1, info);
00395                 if (*info > 0) {
00396                     *info += k;
00397                 }
00398 
00399             }
00400 
00401         } else {
00402 
00403 /*           N is even and TRANSR = 'T' */
00404 
00405             if (lower) {
00406 
00407 /*              SRPA for LOWER, TRANSPOSE and N is even (see paper) */
00408 /*              T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1) */
00409 /*              T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k */
00410 
00411                 dpotrf_("U", &k, &a[k], &k, info);
00412                 if (*info > 0) {
00413                     return 0;
00414                 }
00415                 dtrsm_("L", "U", "T", "N", &k, &k, &c_b12, &a[k], &n1, &a[k * 
00416                         (k + 1)], &k);
00417                 dsyrk_("L", "T", &k, &k, &c_b15, &a[k * (k + 1)], &k, &c_b12, 
00418                         a, &k);
00419                 dpotrf_("L", &k, a, &k, info);
00420                 if (*info > 0) {
00421                     *info += k;
00422                 }
00423 
00424             } else {
00425 
00426 /*              SRPA for UPPER, TRANSPOSE and N is even (see paper) */
00427 /*              T1 -> B(0,k+1),     T2 -> B(0,k),   S -> B(0,0) */
00428 /*              T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k */
00429 
00430                 dpotrf_("U", &k, &a[k * (k + 1)], &k, info);
00431                 if (*info > 0) {
00432                     return 0;
00433                 }
00434                 dtrsm_("R", "U", "N", "N", &k, &k, &c_b12, &a[k * (k + 1)], &
00435                         k, a, &k);
00436                 dsyrk_("L", "N", &k, &k, &c_b15, a, &k, &c_b12, &a[k * k], &k);
00437                 dpotrf_("L", &k, &a[k * k], &k, info);
00438                 if (*info > 0) {
00439                     *info += k;
00440                 }
00441 
00442             }
00443 
00444         }
00445 
00446     }
00447 
00448     return 0;
00449 
00450 /*     End of DPFTRF */
00451 
00452 } /* dpftrf_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:47