dpbtrs.c
Go to the documentation of this file.
00001 /* dpbtrs.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 
00020 /* Subroutine */ int dpbtrs_(char *uplo, integer *n, integer *kd, integer *
00021         nrhs, doublereal *ab, integer *ldab, doublereal *b, integer *ldb, 
00022         integer *info)
00023 {
00024     /* System generated locals */
00025     integer ab_dim1, ab_offset, b_dim1, b_offset, i__1;
00026 
00027     /* Local variables */
00028     integer j;
00029     extern logical lsame_(char *, char *);
00030     extern /* Subroutine */ int dtbsv_(char *, char *, char *, integer *, 
00031             integer *, doublereal *, integer *, doublereal *, integer *);
00032     logical upper;
00033     extern /* Subroutine */ int xerbla_(char *, integer *);
00034 
00035 
00036 /*  -- LAPACK routine (version 3.2) -- */
00037 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00038 /*     November 2006 */
00039 
00040 /*     .. Scalar Arguments .. */
00041 /*     .. */
00042 /*     .. Array Arguments .. */
00043 /*     .. */
00044 
00045 /*  Purpose */
00046 /*  ======= */
00047 
00048 /*  DPBTRS solves a system of linear equations A*X = B with a symmetric */
00049 /*  positive definite band matrix A using the Cholesky factorization */
00050 /*  A = U**T*U or A = L*L**T computed by DPBTRF. */
00051 
00052 /*  Arguments */
00053 /*  ========= */
00054 
00055 /*  UPLO    (input) CHARACTER*1 */
00056 /*          = 'U':  Upper triangular factor stored in AB; */
00057 /*          = 'L':  Lower triangular factor stored in AB. */
00058 
00059 /*  N       (input) INTEGER */
00060 /*          The order of the matrix A.  N >= 0. */
00061 
00062 /*  KD      (input) INTEGER */
00063 /*          The number of superdiagonals of the matrix A if UPLO = 'U', */
00064 /*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0. */
00065 
00066 /*  NRHS    (input) INTEGER */
00067 /*          The number of right hand sides, i.e., the number of columns */
00068 /*          of the matrix B.  NRHS >= 0. */
00069 
00070 /*  AB      (input) DOUBLE PRECISION array, dimension (LDAB,N) */
00071 /*          The triangular factor U or L from the Cholesky factorization */
00072 /*          A = U**T*U or A = L*L**T of the band matrix A, stored in the */
00073 /*          first KD+1 rows of the array.  The j-th column of U or L is */
00074 /*          stored in the j-th column of the array AB as follows: */
00075 /*          if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j; */
00076 /*          if UPLO ='L', AB(1+i-j,j)    = L(i,j) for j<=i<=min(n,j+kd). */
00077 
00078 /*  LDAB    (input) INTEGER */
00079 /*          The leading dimension of the array AB.  LDAB >= KD+1. */
00080 
00081 /*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
00082 /*          On entry, the right hand side matrix B. */
00083 /*          On exit, the solution matrix X. */
00084 
00085 /*  LDB     (input) INTEGER */
00086 /*          The leading dimension of the array B.  LDB >= max(1,N). */
00087 
00088 /*  INFO    (output) INTEGER */
00089 /*          = 0:  successful exit */
00090 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00091 
00092 /*  ===================================================================== */
00093 
00094 /*     .. Local Scalars .. */
00095 /*     .. */
00096 /*     .. External Functions .. */
00097 /*     .. */
00098 /*     .. External Subroutines .. */
00099 /*     .. */
00100 /*     .. Intrinsic Functions .. */
00101 /*     .. */
00102 /*     .. Executable Statements .. */
00103 
00104 /*     Test the input parameters. */
00105 
00106     /* Parameter adjustments */
00107     ab_dim1 = *ldab;
00108     ab_offset = 1 + ab_dim1;
00109     ab -= ab_offset;
00110     b_dim1 = *ldb;
00111     b_offset = 1 + b_dim1;
00112     b -= b_offset;
00113 
00114     /* Function Body */
00115     *info = 0;
00116     upper = lsame_(uplo, "U");
00117     if (! upper && ! lsame_(uplo, "L")) {
00118         *info = -1;
00119     } else if (*n < 0) {
00120         *info = -2;
00121     } else if (*kd < 0) {
00122         *info = -3;
00123     } else if (*nrhs < 0) {
00124         *info = -4;
00125     } else if (*ldab < *kd + 1) {
00126         *info = -6;
00127     } else if (*ldb < max(1,*n)) {
00128         *info = -8;
00129     }
00130     if (*info != 0) {
00131         i__1 = -(*info);
00132         xerbla_("DPBTRS", &i__1);
00133         return 0;
00134     }
00135 
00136 /*     Quick return if possible */
00137 
00138     if (*n == 0 || *nrhs == 0) {
00139         return 0;
00140     }
00141 
00142     if (upper) {
00143 
00144 /*        Solve A*X = B where A = U'*U. */
00145 
00146         i__1 = *nrhs;
00147         for (j = 1; j <= i__1; ++j) {
00148 
00149 /*           Solve U'*X = B, overwriting B with X. */
00150 
00151             dtbsv_("Upper", "Transpose", "Non-unit", n, kd, &ab[ab_offset], 
00152                     ldab, &b[j * b_dim1 + 1], &c__1);
00153 
00154 /*           Solve U*X = B, overwriting B with X. */
00155 
00156             dtbsv_("Upper", "No transpose", "Non-unit", n, kd, &ab[ab_offset], 
00157                      ldab, &b[j * b_dim1 + 1], &c__1);
00158 /* L10: */
00159         }
00160     } else {
00161 
00162 /*        Solve A*X = B where A = L*L'. */
00163 
00164         i__1 = *nrhs;
00165         for (j = 1; j <= i__1; ++j) {
00166 
00167 /*           Solve L*X = B, overwriting B with X. */
00168 
00169             dtbsv_("Lower", "No transpose", "Non-unit", n, kd, &ab[ab_offset], 
00170                      ldab, &b[j * b_dim1 + 1], &c__1);
00171 
00172 /*           Solve L'*X = B, overwriting B with X. */
00173 
00174             dtbsv_("Lower", "Transpose", "Non-unit", n, kd, &ab[ab_offset], 
00175                     ldab, &b[j * b_dim1 + 1], &c__1);
00176 /* L20: */
00177         }
00178     }
00179 
00180     return 0;
00181 
00182 /*     End of DPBTRS */
00183 
00184 } /* dpbtrs_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:47