00001 /* dormr3.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int dormr3_(char *side, char *trans, integer *m, integer *n, 00017 integer *k, integer *l, doublereal *a, integer *lda, doublereal *tau, 00018 doublereal *c__, integer *ldc, doublereal *work, integer *info) 00019 { 00020 /* System generated locals */ 00021 integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2; 00022 00023 /* Local variables */ 00024 integer i__, i1, i2, i3, ja, ic, jc, mi, ni, nq; 00025 logical left; 00026 extern logical lsame_(char *, char *); 00027 extern /* Subroutine */ int dlarz_(char *, integer *, integer *, integer * 00028 , doublereal *, integer *, doublereal *, doublereal *, integer *, 00029 doublereal *), xerbla_(char *, integer *); 00030 logical notran; 00031 00032 00033 /* -- LAPACK routine (version 3.2) -- */ 00034 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00035 /* November 2006 */ 00036 00037 /* .. Scalar Arguments .. */ 00038 /* .. */ 00039 /* .. Array Arguments .. */ 00040 /* .. */ 00041 00042 /* Purpose */ 00043 /* ======= */ 00044 00045 /* DORMR3 overwrites the general real m by n matrix C with */ 00046 00047 /* Q * C if SIDE = 'L' and TRANS = 'N', or */ 00048 00049 /* Q'* C if SIDE = 'L' and TRANS = 'T', or */ 00050 00051 /* C * Q if SIDE = 'R' and TRANS = 'N', or */ 00052 00053 /* C * Q' if SIDE = 'R' and TRANS = 'T', */ 00054 00055 /* where Q is a real orthogonal matrix defined as the product of k */ 00056 /* elementary reflectors */ 00057 00058 /* Q = H(1) H(2) . . . H(k) */ 00059 00060 /* as returned by DTZRZF. Q is of order m if SIDE = 'L' and of order n */ 00061 /* if SIDE = 'R'. */ 00062 00063 /* Arguments */ 00064 /* ========= */ 00065 00066 /* SIDE (input) CHARACTER*1 */ 00067 /* = 'L': apply Q or Q' from the Left */ 00068 /* = 'R': apply Q or Q' from the Right */ 00069 00070 /* TRANS (input) CHARACTER*1 */ 00071 /* = 'N': apply Q (No transpose) */ 00072 /* = 'T': apply Q' (Transpose) */ 00073 00074 /* M (input) INTEGER */ 00075 /* The number of rows of the matrix C. M >= 0. */ 00076 00077 /* N (input) INTEGER */ 00078 /* The number of columns of the matrix C. N >= 0. */ 00079 00080 /* K (input) INTEGER */ 00081 /* The number of elementary reflectors whose product defines */ 00082 /* the matrix Q. */ 00083 /* If SIDE = 'L', M >= K >= 0; */ 00084 /* if SIDE = 'R', N >= K >= 0. */ 00085 00086 /* L (input) INTEGER */ 00087 /* The number of columns of the matrix A containing */ 00088 /* the meaningful part of the Householder reflectors. */ 00089 /* If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0. */ 00090 00091 /* A (input) DOUBLE PRECISION array, dimension */ 00092 /* (LDA,M) if SIDE = 'L', */ 00093 /* (LDA,N) if SIDE = 'R' */ 00094 /* The i-th row must contain the vector which defines the */ 00095 /* elementary reflector H(i), for i = 1,2,...,k, as returned by */ 00096 /* DTZRZF in the last k rows of its array argument A. */ 00097 /* A is modified by the routine but restored on exit. */ 00098 00099 /* LDA (input) INTEGER */ 00100 /* The leading dimension of the array A. LDA >= max(1,K). */ 00101 00102 /* TAU (input) DOUBLE PRECISION array, dimension (K) */ 00103 /* TAU(i) must contain the scalar factor of the elementary */ 00104 /* reflector H(i), as returned by DTZRZF. */ 00105 00106 /* C (input/output) DOUBLE PRECISION array, dimension (LDC,N) */ 00107 /* On entry, the m-by-n matrix C. */ 00108 /* On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q. */ 00109 00110 /* LDC (input) INTEGER */ 00111 /* The leading dimension of the array C. LDC >= max(1,M). */ 00112 00113 /* WORK (workspace) DOUBLE PRECISION array, dimension */ 00114 /* (N) if SIDE = 'L', */ 00115 /* (M) if SIDE = 'R' */ 00116 00117 /* INFO (output) INTEGER */ 00118 /* = 0: successful exit */ 00119 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00120 00121 /* Further Details */ 00122 /* =============== */ 00123 00124 /* Based on contributions by */ 00125 /* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */ 00126 00127 /* ===================================================================== */ 00128 00129 /* .. Local Scalars .. */ 00130 /* .. */ 00131 /* .. External Functions .. */ 00132 /* .. */ 00133 /* .. External Subroutines .. */ 00134 /* .. */ 00135 /* .. Intrinsic Functions .. */ 00136 /* .. */ 00137 /* .. Executable Statements .. */ 00138 00139 /* Test the input arguments */ 00140 00141 /* Parameter adjustments */ 00142 a_dim1 = *lda; 00143 a_offset = 1 + a_dim1; 00144 a -= a_offset; 00145 --tau; 00146 c_dim1 = *ldc; 00147 c_offset = 1 + c_dim1; 00148 c__ -= c_offset; 00149 --work; 00150 00151 /* Function Body */ 00152 *info = 0; 00153 left = lsame_(side, "L"); 00154 notran = lsame_(trans, "N"); 00155 00156 /* NQ is the order of Q */ 00157 00158 if (left) { 00159 nq = *m; 00160 } else { 00161 nq = *n; 00162 } 00163 if (! left && ! lsame_(side, "R")) { 00164 *info = -1; 00165 } else if (! notran && ! lsame_(trans, "T")) { 00166 *info = -2; 00167 } else if (*m < 0) { 00168 *info = -3; 00169 } else if (*n < 0) { 00170 *info = -4; 00171 } else if (*k < 0 || *k > nq) { 00172 *info = -5; 00173 } else if (*l < 0 || left && *l > *m || ! left && *l > *n) { 00174 *info = -6; 00175 } else if (*lda < max(1,*k)) { 00176 *info = -8; 00177 } else if (*ldc < max(1,*m)) { 00178 *info = -11; 00179 } 00180 if (*info != 0) { 00181 i__1 = -(*info); 00182 xerbla_("DORMR3", &i__1); 00183 return 0; 00184 } 00185 00186 /* Quick return if possible */ 00187 00188 if (*m == 0 || *n == 0 || *k == 0) { 00189 return 0; 00190 } 00191 00192 if (left && ! notran || ! left && notran) { 00193 i1 = 1; 00194 i2 = *k; 00195 i3 = 1; 00196 } else { 00197 i1 = *k; 00198 i2 = 1; 00199 i3 = -1; 00200 } 00201 00202 if (left) { 00203 ni = *n; 00204 ja = *m - *l + 1; 00205 jc = 1; 00206 } else { 00207 mi = *m; 00208 ja = *n - *l + 1; 00209 ic = 1; 00210 } 00211 00212 i__1 = i2; 00213 i__2 = i3; 00214 for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { 00215 if (left) { 00216 00217 /* H(i) or H(i)' is applied to C(i:m,1:n) */ 00218 00219 mi = *m - i__ + 1; 00220 ic = i__; 00221 } else { 00222 00223 /* H(i) or H(i)' is applied to C(1:m,i:n) */ 00224 00225 ni = *n - i__ + 1; 00226 jc = i__; 00227 } 00228 00229 /* Apply H(i) or H(i)' */ 00230 00231 dlarz_(side, &mi, &ni, l, &a[i__ + ja * a_dim1], lda, &tau[i__], &c__[ 00232 ic + jc * c_dim1], ldc, &work[1]); 00233 00234 /* L10: */ 00235 } 00236 00237 return 0; 00238 00239 /* End of DORMR3 */ 00240 00241 } /* dormr3_ */