00001 /* dorm2r.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 00020 /* Subroutine */ int dorm2r_(char *side, char *trans, integer *m, integer *n, 00021 integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal * 00022 c__, integer *ldc, doublereal *work, integer *info) 00023 { 00024 /* System generated locals */ 00025 integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2; 00026 00027 /* Local variables */ 00028 integer i__, i1, i2, i3, ic, jc, mi, ni, nq; 00029 doublereal aii; 00030 logical left; 00031 extern /* Subroutine */ int dlarf_(char *, integer *, integer *, 00032 doublereal *, integer *, doublereal *, doublereal *, integer *, 00033 doublereal *); 00034 extern logical lsame_(char *, char *); 00035 extern /* Subroutine */ int xerbla_(char *, integer *); 00036 logical notran; 00037 00038 00039 /* -- LAPACK routine (version 3.2) -- */ 00040 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00041 /* November 2006 */ 00042 00043 /* .. Scalar Arguments .. */ 00044 /* .. */ 00045 /* .. Array Arguments .. */ 00046 /* .. */ 00047 00048 /* Purpose */ 00049 /* ======= */ 00050 00051 /* DORM2R overwrites the general real m by n matrix C with */ 00052 00053 /* Q * C if SIDE = 'L' and TRANS = 'N', or */ 00054 00055 /* Q'* C if SIDE = 'L' and TRANS = 'T', or */ 00056 00057 /* C * Q if SIDE = 'R' and TRANS = 'N', or */ 00058 00059 /* C * Q' if SIDE = 'R' and TRANS = 'T', */ 00060 00061 /* where Q is a real orthogonal matrix defined as the product of k */ 00062 /* elementary reflectors */ 00063 00064 /* Q = H(1) H(2) . . . H(k) */ 00065 00066 /* as returned by DGEQRF. Q is of order m if SIDE = 'L' and of order n */ 00067 /* if SIDE = 'R'. */ 00068 00069 /* Arguments */ 00070 /* ========= */ 00071 00072 /* SIDE (input) CHARACTER*1 */ 00073 /* = 'L': apply Q or Q' from the Left */ 00074 /* = 'R': apply Q or Q' from the Right */ 00075 00076 /* TRANS (input) CHARACTER*1 */ 00077 /* = 'N': apply Q (No transpose) */ 00078 /* = 'T': apply Q' (Transpose) */ 00079 00080 /* M (input) INTEGER */ 00081 /* The number of rows of the matrix C. M >= 0. */ 00082 00083 /* N (input) INTEGER */ 00084 /* The number of columns of the matrix C. N >= 0. */ 00085 00086 /* K (input) INTEGER */ 00087 /* The number of elementary reflectors whose product defines */ 00088 /* the matrix Q. */ 00089 /* If SIDE = 'L', M >= K >= 0; */ 00090 /* if SIDE = 'R', N >= K >= 0. */ 00091 00092 /* A (input) DOUBLE PRECISION array, dimension (LDA,K) */ 00093 /* The i-th column must contain the vector which defines the */ 00094 /* elementary reflector H(i), for i = 1,2,...,k, as returned by */ 00095 /* DGEQRF in the first k columns of its array argument A. */ 00096 /* A is modified by the routine but restored on exit. */ 00097 00098 /* LDA (input) INTEGER */ 00099 /* The leading dimension of the array A. */ 00100 /* If SIDE = 'L', LDA >= max(1,M); */ 00101 /* if SIDE = 'R', LDA >= max(1,N). */ 00102 00103 /* TAU (input) DOUBLE PRECISION array, dimension (K) */ 00104 /* TAU(i) must contain the scalar factor of the elementary */ 00105 /* reflector H(i), as returned by DGEQRF. */ 00106 00107 /* C (input/output) DOUBLE PRECISION array, dimension (LDC,N) */ 00108 /* On entry, the m by n matrix C. */ 00109 /* On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q. */ 00110 00111 /* LDC (input) INTEGER */ 00112 /* The leading dimension of the array C. LDC >= max(1,M). */ 00113 00114 /* WORK (workspace) DOUBLE PRECISION array, dimension */ 00115 /* (N) if SIDE = 'L', */ 00116 /* (M) if SIDE = 'R' */ 00117 00118 /* INFO (output) INTEGER */ 00119 /* = 0: successful exit */ 00120 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00121 00122 /* ===================================================================== */ 00123 00124 /* .. Parameters .. */ 00125 /* .. */ 00126 /* .. Local Scalars .. */ 00127 /* .. */ 00128 /* .. External Functions .. */ 00129 /* .. */ 00130 /* .. External Subroutines .. */ 00131 /* .. */ 00132 /* .. Intrinsic Functions .. */ 00133 /* .. */ 00134 /* .. Executable Statements .. */ 00135 00136 /* Test the input arguments */ 00137 00138 /* Parameter adjustments */ 00139 a_dim1 = *lda; 00140 a_offset = 1 + a_dim1; 00141 a -= a_offset; 00142 --tau; 00143 c_dim1 = *ldc; 00144 c_offset = 1 + c_dim1; 00145 c__ -= c_offset; 00146 --work; 00147 00148 /* Function Body */ 00149 *info = 0; 00150 left = lsame_(side, "L"); 00151 notran = lsame_(trans, "N"); 00152 00153 /* NQ is the order of Q */ 00154 00155 if (left) { 00156 nq = *m; 00157 } else { 00158 nq = *n; 00159 } 00160 if (! left && ! lsame_(side, "R")) { 00161 *info = -1; 00162 } else if (! notran && ! lsame_(trans, "T")) { 00163 *info = -2; 00164 } else if (*m < 0) { 00165 *info = -3; 00166 } else if (*n < 0) { 00167 *info = -4; 00168 } else if (*k < 0 || *k > nq) { 00169 *info = -5; 00170 } else if (*lda < max(1,nq)) { 00171 *info = -7; 00172 } else if (*ldc < max(1,*m)) { 00173 *info = -10; 00174 } 00175 if (*info != 0) { 00176 i__1 = -(*info); 00177 xerbla_("DORM2R", &i__1); 00178 return 0; 00179 } 00180 00181 /* Quick return if possible */ 00182 00183 if (*m == 0 || *n == 0 || *k == 0) { 00184 return 0; 00185 } 00186 00187 if (left && ! notran || ! left && notran) { 00188 i1 = 1; 00189 i2 = *k; 00190 i3 = 1; 00191 } else { 00192 i1 = *k; 00193 i2 = 1; 00194 i3 = -1; 00195 } 00196 00197 if (left) { 00198 ni = *n; 00199 jc = 1; 00200 } else { 00201 mi = *m; 00202 ic = 1; 00203 } 00204 00205 i__1 = i2; 00206 i__2 = i3; 00207 for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { 00208 if (left) { 00209 00210 /* H(i) is applied to C(i:m,1:n) */ 00211 00212 mi = *m - i__ + 1; 00213 ic = i__; 00214 } else { 00215 00216 /* H(i) is applied to C(1:m,i:n) */ 00217 00218 ni = *n - i__ + 1; 00219 jc = i__; 00220 } 00221 00222 /* Apply H(i) */ 00223 00224 aii = a[i__ + i__ * a_dim1]; 00225 a[i__ + i__ * a_dim1] = 1.; 00226 dlarf_(side, &mi, &ni, &a[i__ + i__ * a_dim1], &c__1, &tau[i__], &c__[ 00227 ic + jc * c_dim1], ldc, &work[1]); 00228 a[i__ + i__ * a_dim1] = aii; 00229 /* L10: */ 00230 } 00231 return 0; 00232 00233 /* End of DORM2R */ 00234 00235 } /* dorm2r_ */