00001 /* dorg2l.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 00020 /* Subroutine */ int dorg2l_(integer *m, integer *n, integer *k, doublereal * 00021 a, integer *lda, doublereal *tau, doublereal *work, integer *info) 00022 { 00023 /* System generated locals */ 00024 integer a_dim1, a_offset, i__1, i__2, i__3; 00025 doublereal d__1; 00026 00027 /* Local variables */ 00028 integer i__, j, l, ii; 00029 extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 00030 integer *), dlarf_(char *, integer *, integer *, doublereal *, 00031 integer *, doublereal *, doublereal *, integer *, doublereal *), xerbla_(char *, integer *); 00032 00033 00034 /* -- LAPACK routine (version 3.2) -- */ 00035 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00036 /* November 2006 */ 00037 00038 /* .. Scalar Arguments .. */ 00039 /* .. */ 00040 /* .. Array Arguments .. */ 00041 /* .. */ 00042 00043 /* Purpose */ 00044 /* ======= */ 00045 00046 /* DORG2L generates an m by n real matrix Q with orthonormal columns, */ 00047 /* which is defined as the last n columns of a product of k elementary */ 00048 /* reflectors of order m */ 00049 00050 /* Q = H(k) . . . H(2) H(1) */ 00051 00052 /* as returned by DGEQLF. */ 00053 00054 /* Arguments */ 00055 /* ========= */ 00056 00057 /* M (input) INTEGER */ 00058 /* The number of rows of the matrix Q. M >= 0. */ 00059 00060 /* N (input) INTEGER */ 00061 /* The number of columns of the matrix Q. M >= N >= 0. */ 00062 00063 /* K (input) INTEGER */ 00064 /* The number of elementary reflectors whose product defines the */ 00065 /* matrix Q. N >= K >= 0. */ 00066 00067 /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */ 00068 /* On entry, the (n-k+i)-th column must contain the vector which */ 00069 /* defines the elementary reflector H(i), for i = 1,2,...,k, as */ 00070 /* returned by DGEQLF in the last k columns of its array */ 00071 /* argument A. */ 00072 /* On exit, the m by n matrix Q. */ 00073 00074 /* LDA (input) INTEGER */ 00075 /* The first dimension of the array A. LDA >= max(1,M). */ 00076 00077 /* TAU (input) DOUBLE PRECISION array, dimension (K) */ 00078 /* TAU(i) must contain the scalar factor of the elementary */ 00079 /* reflector H(i), as returned by DGEQLF. */ 00080 00081 /* WORK (workspace) DOUBLE PRECISION array, dimension (N) */ 00082 00083 /* INFO (output) INTEGER */ 00084 /* = 0: successful exit */ 00085 /* < 0: if INFO = -i, the i-th argument has an illegal value */ 00086 00087 /* ===================================================================== */ 00088 00089 /* .. Parameters .. */ 00090 /* .. */ 00091 /* .. Local Scalars .. */ 00092 /* .. */ 00093 /* .. External Subroutines .. */ 00094 /* .. */ 00095 /* .. Intrinsic Functions .. */ 00096 /* .. */ 00097 /* .. Executable Statements .. */ 00098 00099 /* Test the input arguments */ 00100 00101 /* Parameter adjustments */ 00102 a_dim1 = *lda; 00103 a_offset = 1 + a_dim1; 00104 a -= a_offset; 00105 --tau; 00106 --work; 00107 00108 /* Function Body */ 00109 *info = 0; 00110 if (*m < 0) { 00111 *info = -1; 00112 } else if (*n < 0 || *n > *m) { 00113 *info = -2; 00114 } else if (*k < 0 || *k > *n) { 00115 *info = -3; 00116 } else if (*lda < max(1,*m)) { 00117 *info = -5; 00118 } 00119 if (*info != 0) { 00120 i__1 = -(*info); 00121 xerbla_("DORG2L", &i__1); 00122 return 0; 00123 } 00124 00125 /* Quick return if possible */ 00126 00127 if (*n <= 0) { 00128 return 0; 00129 } 00130 00131 /* Initialise columns 1:n-k to columns of the unit matrix */ 00132 00133 i__1 = *n - *k; 00134 for (j = 1; j <= i__1; ++j) { 00135 i__2 = *m; 00136 for (l = 1; l <= i__2; ++l) { 00137 a[l + j * a_dim1] = 0.; 00138 /* L10: */ 00139 } 00140 a[*m - *n + j + j * a_dim1] = 1.; 00141 /* L20: */ 00142 } 00143 00144 i__1 = *k; 00145 for (i__ = 1; i__ <= i__1; ++i__) { 00146 ii = *n - *k + i__; 00147 00148 /* Apply H(i) to A(1:m-k+i,1:n-k+i) from the left */ 00149 00150 a[*m - *n + ii + ii * a_dim1] = 1.; 00151 i__2 = *m - *n + ii; 00152 i__3 = ii - 1; 00153 dlarf_("Left", &i__2, &i__3, &a[ii * a_dim1 + 1], &c__1, &tau[i__], & 00154 a[a_offset], lda, &work[1]); 00155 i__2 = *m - *n + ii - 1; 00156 d__1 = -tau[i__]; 00157 dscal_(&i__2, &d__1, &a[ii * a_dim1 + 1], &c__1); 00158 a[*m - *n + ii + ii * a_dim1] = 1. - tau[i__]; 00159 00160 /* Set A(m-k+i+1:m,n-k+i) to zero */ 00161 00162 i__2 = *m; 00163 for (l = *m - *n + ii + 1; l <= i__2; ++l) { 00164 a[l + ii * a_dim1] = 0.; 00165 /* L30: */ 00166 } 00167 /* L40: */ 00168 } 00169 return 0; 00170 00171 /* End of DORG2L */ 00172 00173 } /* dorg2l_ */