00001 /* dlatrz.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int dlatrz_(integer *m, integer *n, integer *l, doublereal * 00017 a, integer *lda, doublereal *tau, doublereal *work) 00018 { 00019 /* System generated locals */ 00020 integer a_dim1, a_offset, i__1, i__2; 00021 00022 /* Local variables */ 00023 integer i__; 00024 extern /* Subroutine */ int dlarz_(char *, integer *, integer *, integer * 00025 , doublereal *, integer *, doublereal *, doublereal *, integer *, 00026 doublereal *), dlarfp_(integer *, doublereal *, 00027 doublereal *, integer *, doublereal *); 00028 00029 00030 /* -- LAPACK routine (version 3.2) -- */ 00031 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00032 /* November 2006 */ 00033 00034 /* .. Scalar Arguments .. */ 00035 /* .. */ 00036 /* .. Array Arguments .. */ 00037 /* .. */ 00038 00039 /* Purpose */ 00040 /* ======= */ 00041 00042 /* DLATRZ factors the M-by-(M+L) real upper trapezoidal matrix */ 00043 /* [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z, by means */ 00044 /* of orthogonal transformations. Z is an (M+L)-by-(M+L) orthogonal */ 00045 /* matrix and, R and A1 are M-by-M upper triangular matrices. */ 00046 00047 /* Arguments */ 00048 /* ========= */ 00049 00050 /* M (input) INTEGER */ 00051 /* The number of rows of the matrix A. M >= 0. */ 00052 00053 /* N (input) INTEGER */ 00054 /* The number of columns of the matrix A. N >= 0. */ 00055 00056 /* L (input) INTEGER */ 00057 /* The number of columns of the matrix A containing the */ 00058 /* meaningful part of the Householder vectors. N-M >= L >= 0. */ 00059 00060 /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */ 00061 /* On entry, the leading M-by-N upper trapezoidal part of the */ 00062 /* array A must contain the matrix to be factorized. */ 00063 /* On exit, the leading M-by-M upper triangular part of A */ 00064 /* contains the upper triangular matrix R, and elements N-L+1 to */ 00065 /* N of the first M rows of A, with the array TAU, represent the */ 00066 /* orthogonal matrix Z as a product of M elementary reflectors. */ 00067 00068 /* LDA (input) INTEGER */ 00069 /* The leading dimension of the array A. LDA >= max(1,M). */ 00070 00071 /* TAU (output) DOUBLE PRECISION array, dimension (M) */ 00072 /* The scalar factors of the elementary reflectors. */ 00073 00074 /* WORK (workspace) DOUBLE PRECISION array, dimension (M) */ 00075 00076 /* Further Details */ 00077 /* =============== */ 00078 00079 /* Based on contributions by */ 00080 /* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */ 00081 00082 /* The factorization is obtained by Householder's method. The kth */ 00083 /* transformation matrix, Z( k ), which is used to introduce zeros into */ 00084 /* the ( m - k + 1 )th row of A, is given in the form */ 00085 00086 /* Z( k ) = ( I 0 ), */ 00087 /* ( 0 T( k ) ) */ 00088 00089 /* where */ 00090 00091 /* T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ), */ 00092 /* ( 0 ) */ 00093 /* ( z( k ) ) */ 00094 00095 /* tau is a scalar and z( k ) is an l element vector. tau and z( k ) */ 00096 /* are chosen to annihilate the elements of the kth row of A2. */ 00097 00098 /* The scalar tau is returned in the kth element of TAU and the vector */ 00099 /* u( k ) in the kth row of A2, such that the elements of z( k ) are */ 00100 /* in a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in */ 00101 /* the upper triangular part of A1. */ 00102 00103 /* Z is given by */ 00104 00105 /* Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). */ 00106 00107 /* ===================================================================== */ 00108 00109 /* .. Parameters .. */ 00110 /* .. */ 00111 /* .. Local Scalars .. */ 00112 /* .. */ 00113 /* .. External Subroutines .. */ 00114 /* .. */ 00115 /* .. Executable Statements .. */ 00116 00117 /* Test the input arguments */ 00118 00119 /* Quick return if possible */ 00120 00121 /* Parameter adjustments */ 00122 a_dim1 = *lda; 00123 a_offset = 1 + a_dim1; 00124 a -= a_offset; 00125 --tau; 00126 --work; 00127 00128 /* Function Body */ 00129 if (*m == 0) { 00130 return 0; 00131 } else if (*m == *n) { 00132 i__1 = *n; 00133 for (i__ = 1; i__ <= i__1; ++i__) { 00134 tau[i__] = 0.; 00135 /* L10: */ 00136 } 00137 return 0; 00138 } 00139 00140 for (i__ = *m; i__ >= 1; --i__) { 00141 00142 /* Generate elementary reflector H(i) to annihilate */ 00143 /* [ A(i,i) A(i,n-l+1:n) ] */ 00144 00145 i__1 = *l + 1; 00146 dlarfp_(&i__1, &a[i__ + i__ * a_dim1], &a[i__ + (*n - *l + 1) * 00147 a_dim1], lda, &tau[i__]); 00148 00149 /* Apply H(i) to A(1:i-1,i:n) from the right */ 00150 00151 i__1 = i__ - 1; 00152 i__2 = *n - i__ + 1; 00153 dlarz_("Right", &i__1, &i__2, l, &a[i__ + (*n - *l + 1) * a_dim1], 00154 lda, &tau[i__], &a[i__ * a_dim1 + 1], lda, &work[1]); 00155 00156 /* L20: */ 00157 } 00158 00159 return 0; 00160 00161 /* End of DLATRZ */ 00162 00163 } /* dlatrz_ */