00001 /* dlasd2.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 static doublereal c_b30 = 0.; 00020 00021 /* Subroutine */ int dlasd2_(integer *nl, integer *nr, integer *sqre, integer 00022 *k, doublereal *d__, doublereal *z__, doublereal *alpha, doublereal * 00023 beta, doublereal *u, integer *ldu, doublereal *vt, integer *ldvt, 00024 doublereal *dsigma, doublereal *u2, integer *ldu2, doublereal *vt2, 00025 integer *ldvt2, integer *idxp, integer *idx, integer *idxc, integer * 00026 idxq, integer *coltyp, integer *info) 00027 { 00028 /* System generated locals */ 00029 integer u_dim1, u_offset, u2_dim1, u2_offset, vt_dim1, vt_offset, 00030 vt2_dim1, vt2_offset, i__1; 00031 doublereal d__1, d__2; 00032 00033 /* Local variables */ 00034 doublereal c__; 00035 integer i__, j, m, n; 00036 doublereal s; 00037 integer k2; 00038 doublereal z1; 00039 integer ct, jp; 00040 doublereal eps, tau, tol; 00041 integer psm[4], nlp1, nlp2, idxi, idxj; 00042 extern /* Subroutine */ int drot_(integer *, doublereal *, integer *, 00043 doublereal *, integer *, doublereal *, doublereal *); 00044 integer ctot[4], idxjp; 00045 extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 00046 doublereal *, integer *); 00047 integer jprev; 00048 extern doublereal dlapy2_(doublereal *, doublereal *), dlamch_(char *); 00049 extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *, 00050 integer *, integer *, integer *), dlacpy_(char *, integer *, 00051 integer *, doublereal *, integer *, doublereal *, integer *), dlaset_(char *, integer *, integer *, doublereal *, 00052 doublereal *, doublereal *, integer *), xerbla_(char *, 00053 integer *); 00054 doublereal hlftol; 00055 00056 00057 /* -- LAPACK auxiliary routine (version 3.2) -- */ 00058 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00059 /* November 2006 */ 00060 00061 /* .. Scalar Arguments .. */ 00062 /* .. */ 00063 /* .. Array Arguments .. */ 00064 /* .. */ 00065 00066 /* Purpose */ 00067 /* ======= */ 00068 00069 /* DLASD2 merges the two sets of singular values together into a single */ 00070 /* sorted set. Then it tries to deflate the size of the problem. */ 00071 /* There are two ways in which deflation can occur: when two or more */ 00072 /* singular values are close together or if there is a tiny entry in the */ 00073 /* Z vector. For each such occurrence the order of the related secular */ 00074 /* equation problem is reduced by one. */ 00075 00076 /* DLASD2 is called from DLASD1. */ 00077 00078 /* Arguments */ 00079 /* ========= */ 00080 00081 /* NL (input) INTEGER */ 00082 /* The row dimension of the upper block. NL >= 1. */ 00083 00084 /* NR (input) INTEGER */ 00085 /* The row dimension of the lower block. NR >= 1. */ 00086 00087 /* SQRE (input) INTEGER */ 00088 /* = 0: the lower block is an NR-by-NR square matrix. */ 00089 /* = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */ 00090 00091 /* The bidiagonal matrix has N = NL + NR + 1 rows and */ 00092 /* M = N + SQRE >= N columns. */ 00093 00094 /* K (output) INTEGER */ 00095 /* Contains the dimension of the non-deflated matrix, */ 00096 /* This is the order of the related secular equation. 1 <= K <=N. */ 00097 00098 /* D (input/output) DOUBLE PRECISION array, dimension(N) */ 00099 /* On entry D contains the singular values of the two submatrices */ 00100 /* to be combined. On exit D contains the trailing (N-K) updated */ 00101 /* singular values (those which were deflated) sorted into */ 00102 /* increasing order. */ 00103 00104 /* Z (output) DOUBLE PRECISION array, dimension(N) */ 00105 /* On exit Z contains the updating row vector in the secular */ 00106 /* equation. */ 00107 00108 /* ALPHA (input) DOUBLE PRECISION */ 00109 /* Contains the diagonal element associated with the added row. */ 00110 00111 /* BETA (input) DOUBLE PRECISION */ 00112 /* Contains the off-diagonal element associated with the added */ 00113 /* row. */ 00114 00115 /* U (input/output) DOUBLE PRECISION array, dimension(LDU,N) */ 00116 /* On entry U contains the left singular vectors of two */ 00117 /* submatrices in the two square blocks with corners at (1,1), */ 00118 /* (NL, NL), and (NL+2, NL+2), (N,N). */ 00119 /* On exit U contains the trailing (N-K) updated left singular */ 00120 /* vectors (those which were deflated) in its last N-K columns. */ 00121 00122 /* LDU (input) INTEGER */ 00123 /* The leading dimension of the array U. LDU >= N. */ 00124 00125 /* VT (input/output) DOUBLE PRECISION array, dimension(LDVT,M) */ 00126 /* On entry VT' contains the right singular vectors of two */ 00127 /* submatrices in the two square blocks with corners at (1,1), */ 00128 /* (NL+1, NL+1), and (NL+2, NL+2), (M,M). */ 00129 /* On exit VT' contains the trailing (N-K) updated right singular */ 00130 /* vectors (those which were deflated) in its last N-K columns. */ 00131 /* In case SQRE =1, the last row of VT spans the right null */ 00132 /* space. */ 00133 00134 /* LDVT (input) INTEGER */ 00135 /* The leading dimension of the array VT. LDVT >= M. */ 00136 00137 /* DSIGMA (output) DOUBLE PRECISION array, dimension (N) */ 00138 /* Contains a copy of the diagonal elements (K-1 singular values */ 00139 /* and one zero) in the secular equation. */ 00140 00141 /* U2 (output) DOUBLE PRECISION array, dimension(LDU2,N) */ 00142 /* Contains a copy of the first K-1 left singular vectors which */ 00143 /* will be used by DLASD3 in a matrix multiply (DGEMM) to solve */ 00144 /* for the new left singular vectors. U2 is arranged into four */ 00145 /* blocks. The first block contains a column with 1 at NL+1 and */ 00146 /* zero everywhere else; the second block contains non-zero */ 00147 /* entries only at and above NL; the third contains non-zero */ 00148 /* entries only below NL+1; and the fourth is dense. */ 00149 00150 /* LDU2 (input) INTEGER */ 00151 /* The leading dimension of the array U2. LDU2 >= N. */ 00152 00153 /* VT2 (output) DOUBLE PRECISION array, dimension(LDVT2,N) */ 00154 /* VT2' contains a copy of the first K right singular vectors */ 00155 /* which will be used by DLASD3 in a matrix multiply (DGEMM) to */ 00156 /* solve for the new right singular vectors. VT2 is arranged into */ 00157 /* three blocks. The first block contains a row that corresponds */ 00158 /* to the special 0 diagonal element in SIGMA; the second block */ 00159 /* contains non-zeros only at and before NL +1; the third block */ 00160 /* contains non-zeros only at and after NL +2. */ 00161 00162 /* LDVT2 (input) INTEGER */ 00163 /* The leading dimension of the array VT2. LDVT2 >= M. */ 00164 00165 /* IDXP (workspace) INTEGER array dimension(N) */ 00166 /* This will contain the permutation used to place deflated */ 00167 /* values of D at the end of the array. On output IDXP(2:K) */ 00168 /* points to the nondeflated D-values and IDXP(K+1:N) */ 00169 /* points to the deflated singular values. */ 00170 00171 /* IDX (workspace) INTEGER array dimension(N) */ 00172 /* This will contain the permutation used to sort the contents of */ 00173 /* D into ascending order. */ 00174 00175 /* IDXC (output) INTEGER array dimension(N) */ 00176 /* This will contain the permutation used to arrange the columns */ 00177 /* of the deflated U matrix into three groups: the first group */ 00178 /* contains non-zero entries only at and above NL, the second */ 00179 /* contains non-zero entries only below NL+2, and the third is */ 00180 /* dense. */ 00181 00182 /* IDXQ (input/output) INTEGER array dimension(N) */ 00183 /* This contains the permutation which separately sorts the two */ 00184 /* sub-problems in D into ascending order. Note that entries in */ 00185 /* the first hlaf of this permutation must first be moved one */ 00186 /* position backward; and entries in the second half */ 00187 /* must first have NL+1 added to their values. */ 00188 00189 /* COLTYP (workspace/output) INTEGER array dimension(N) */ 00190 /* As workspace, this will contain a label which will indicate */ 00191 /* which of the following types a column in the U2 matrix or a */ 00192 /* row in the VT2 matrix is: */ 00193 /* 1 : non-zero in the upper half only */ 00194 /* 2 : non-zero in the lower half only */ 00195 /* 3 : dense */ 00196 /* 4 : deflated */ 00197 00198 /* On exit, it is an array of dimension 4, with COLTYP(I) being */ 00199 /* the dimension of the I-th type columns. */ 00200 00201 /* INFO (output) INTEGER */ 00202 /* = 0: successful exit. */ 00203 /* < 0: if INFO = -i, the i-th argument had an illegal value. */ 00204 00205 /* Further Details */ 00206 /* =============== */ 00207 00208 /* Based on contributions by */ 00209 /* Ming Gu and Huan Ren, Computer Science Division, University of */ 00210 /* California at Berkeley, USA */ 00211 00212 /* ===================================================================== */ 00213 00214 /* .. Parameters .. */ 00215 /* .. */ 00216 /* .. Local Arrays .. */ 00217 /* .. */ 00218 /* .. Local Scalars .. */ 00219 /* .. */ 00220 /* .. External Functions .. */ 00221 /* .. */ 00222 /* .. External Subroutines .. */ 00223 /* .. */ 00224 /* .. Intrinsic Functions .. */ 00225 /* .. */ 00226 /* .. Executable Statements .. */ 00227 00228 /* Test the input parameters. */ 00229 00230 /* Parameter adjustments */ 00231 --d__; 00232 --z__; 00233 u_dim1 = *ldu; 00234 u_offset = 1 + u_dim1; 00235 u -= u_offset; 00236 vt_dim1 = *ldvt; 00237 vt_offset = 1 + vt_dim1; 00238 vt -= vt_offset; 00239 --dsigma; 00240 u2_dim1 = *ldu2; 00241 u2_offset = 1 + u2_dim1; 00242 u2 -= u2_offset; 00243 vt2_dim1 = *ldvt2; 00244 vt2_offset = 1 + vt2_dim1; 00245 vt2 -= vt2_offset; 00246 --idxp; 00247 --idx; 00248 --idxc; 00249 --idxq; 00250 --coltyp; 00251 00252 /* Function Body */ 00253 *info = 0; 00254 00255 if (*nl < 1) { 00256 *info = -1; 00257 } else if (*nr < 1) { 00258 *info = -2; 00259 } else if (*sqre != 1 && *sqre != 0) { 00260 *info = -3; 00261 } 00262 00263 n = *nl + *nr + 1; 00264 m = n + *sqre; 00265 00266 if (*ldu < n) { 00267 *info = -10; 00268 } else if (*ldvt < m) { 00269 *info = -12; 00270 } else if (*ldu2 < n) { 00271 *info = -15; 00272 } else if (*ldvt2 < m) { 00273 *info = -17; 00274 } 00275 if (*info != 0) { 00276 i__1 = -(*info); 00277 xerbla_("DLASD2", &i__1); 00278 return 0; 00279 } 00280 00281 nlp1 = *nl + 1; 00282 nlp2 = *nl + 2; 00283 00284 /* Generate the first part of the vector Z; and move the singular */ 00285 /* values in the first part of D one position backward. */ 00286 00287 z1 = *alpha * vt[nlp1 + nlp1 * vt_dim1]; 00288 z__[1] = z1; 00289 for (i__ = *nl; i__ >= 1; --i__) { 00290 z__[i__ + 1] = *alpha * vt[i__ + nlp1 * vt_dim1]; 00291 d__[i__ + 1] = d__[i__]; 00292 idxq[i__ + 1] = idxq[i__] + 1; 00293 /* L10: */ 00294 } 00295 00296 /* Generate the second part of the vector Z. */ 00297 00298 i__1 = m; 00299 for (i__ = nlp2; i__ <= i__1; ++i__) { 00300 z__[i__] = *beta * vt[i__ + nlp2 * vt_dim1]; 00301 /* L20: */ 00302 } 00303 00304 /* Initialize some reference arrays. */ 00305 00306 i__1 = nlp1; 00307 for (i__ = 2; i__ <= i__1; ++i__) { 00308 coltyp[i__] = 1; 00309 /* L30: */ 00310 } 00311 i__1 = n; 00312 for (i__ = nlp2; i__ <= i__1; ++i__) { 00313 coltyp[i__] = 2; 00314 /* L40: */ 00315 } 00316 00317 /* Sort the singular values into increasing order */ 00318 00319 i__1 = n; 00320 for (i__ = nlp2; i__ <= i__1; ++i__) { 00321 idxq[i__] += nlp1; 00322 /* L50: */ 00323 } 00324 00325 /* DSIGMA, IDXC, IDXC, and the first column of U2 */ 00326 /* are used as storage space. */ 00327 00328 i__1 = n; 00329 for (i__ = 2; i__ <= i__1; ++i__) { 00330 dsigma[i__] = d__[idxq[i__]]; 00331 u2[i__ + u2_dim1] = z__[idxq[i__]]; 00332 idxc[i__] = coltyp[idxq[i__]]; 00333 /* L60: */ 00334 } 00335 00336 dlamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]); 00337 00338 i__1 = n; 00339 for (i__ = 2; i__ <= i__1; ++i__) { 00340 idxi = idx[i__] + 1; 00341 d__[i__] = dsigma[idxi]; 00342 z__[i__] = u2[idxi + u2_dim1]; 00343 coltyp[i__] = idxc[idxi]; 00344 /* L70: */ 00345 } 00346 00347 /* Calculate the allowable deflation tolerance */ 00348 00349 eps = dlamch_("Epsilon"); 00350 /* Computing MAX */ 00351 d__1 = abs(*alpha), d__2 = abs(*beta); 00352 tol = max(d__1,d__2); 00353 /* Computing MAX */ 00354 d__2 = (d__1 = d__[n], abs(d__1)); 00355 tol = eps * 8. * max(d__2,tol); 00356 00357 /* There are 2 kinds of deflation -- first a value in the z-vector */ 00358 /* is small, second two (or more) singular values are very close */ 00359 /* together (their difference is small). */ 00360 00361 /* If the value in the z-vector is small, we simply permute the */ 00362 /* array so that the corresponding singular value is moved to the */ 00363 /* end. */ 00364 00365 /* If two values in the D-vector are close, we perform a two-sided */ 00366 /* rotation designed to make one of the corresponding z-vector */ 00367 /* entries zero, and then permute the array so that the deflated */ 00368 /* singular value is moved to the end. */ 00369 00370 /* If there are multiple singular values then the problem deflates. */ 00371 /* Here the number of equal singular values are found. As each equal */ 00372 /* singular value is found, an elementary reflector is computed to */ 00373 /* rotate the corresponding singular subspace so that the */ 00374 /* corresponding components of Z are zero in this new basis. */ 00375 00376 *k = 1; 00377 k2 = n + 1; 00378 i__1 = n; 00379 for (j = 2; j <= i__1; ++j) { 00380 if ((d__1 = z__[j], abs(d__1)) <= tol) { 00381 00382 /* Deflate due to small z component. */ 00383 00384 --k2; 00385 idxp[k2] = j; 00386 coltyp[j] = 4; 00387 if (j == n) { 00388 goto L120; 00389 } 00390 } else { 00391 jprev = j; 00392 goto L90; 00393 } 00394 /* L80: */ 00395 } 00396 L90: 00397 j = jprev; 00398 L100: 00399 ++j; 00400 if (j > n) { 00401 goto L110; 00402 } 00403 if ((d__1 = z__[j], abs(d__1)) <= tol) { 00404 00405 /* Deflate due to small z component. */ 00406 00407 --k2; 00408 idxp[k2] = j; 00409 coltyp[j] = 4; 00410 } else { 00411 00412 /* Check if singular values are close enough to allow deflation. */ 00413 00414 if ((d__1 = d__[j] - d__[jprev], abs(d__1)) <= tol) { 00415 00416 /* Deflation is possible. */ 00417 00418 s = z__[jprev]; 00419 c__ = z__[j]; 00420 00421 /* Find sqrt(a**2+b**2) without overflow or */ 00422 /* destructive underflow. */ 00423 00424 tau = dlapy2_(&c__, &s); 00425 c__ /= tau; 00426 s = -s / tau; 00427 z__[j] = tau; 00428 z__[jprev] = 0.; 00429 00430 /* Apply back the Givens rotation to the left and right */ 00431 /* singular vector matrices. */ 00432 00433 idxjp = idxq[idx[jprev] + 1]; 00434 idxj = idxq[idx[j] + 1]; 00435 if (idxjp <= nlp1) { 00436 --idxjp; 00437 } 00438 if (idxj <= nlp1) { 00439 --idxj; 00440 } 00441 drot_(&n, &u[idxjp * u_dim1 + 1], &c__1, &u[idxj * u_dim1 + 1], & 00442 c__1, &c__, &s); 00443 drot_(&m, &vt[idxjp + vt_dim1], ldvt, &vt[idxj + vt_dim1], ldvt, & 00444 c__, &s); 00445 if (coltyp[j] != coltyp[jprev]) { 00446 coltyp[j] = 3; 00447 } 00448 coltyp[jprev] = 4; 00449 --k2; 00450 idxp[k2] = jprev; 00451 jprev = j; 00452 } else { 00453 ++(*k); 00454 u2[*k + u2_dim1] = z__[jprev]; 00455 dsigma[*k] = d__[jprev]; 00456 idxp[*k] = jprev; 00457 jprev = j; 00458 } 00459 } 00460 goto L100; 00461 L110: 00462 00463 /* Record the last singular value. */ 00464 00465 ++(*k); 00466 u2[*k + u2_dim1] = z__[jprev]; 00467 dsigma[*k] = d__[jprev]; 00468 idxp[*k] = jprev; 00469 00470 L120: 00471 00472 /* Count up the total number of the various types of columns, then */ 00473 /* form a permutation which positions the four column types into */ 00474 /* four groups of uniform structure (although one or more of these */ 00475 /* groups may be empty). */ 00476 00477 for (j = 1; j <= 4; ++j) { 00478 ctot[j - 1] = 0; 00479 /* L130: */ 00480 } 00481 i__1 = n; 00482 for (j = 2; j <= i__1; ++j) { 00483 ct = coltyp[j]; 00484 ++ctot[ct - 1]; 00485 /* L140: */ 00486 } 00487 00488 /* PSM(*) = Position in SubMatrix (of types 1 through 4) */ 00489 00490 psm[0] = 2; 00491 psm[1] = ctot[0] + 2; 00492 psm[2] = psm[1] + ctot[1]; 00493 psm[3] = psm[2] + ctot[2]; 00494 00495 /* Fill out the IDXC array so that the permutation which it induces */ 00496 /* will place all type-1 columns first, all type-2 columns next, */ 00497 /* then all type-3's, and finally all type-4's, starting from the */ 00498 /* second column. This applies similarly to the rows of VT. */ 00499 00500 i__1 = n; 00501 for (j = 2; j <= i__1; ++j) { 00502 jp = idxp[j]; 00503 ct = coltyp[jp]; 00504 idxc[psm[ct - 1]] = j; 00505 ++psm[ct - 1]; 00506 /* L150: */ 00507 } 00508 00509 /* Sort the singular values and corresponding singular vectors into */ 00510 /* DSIGMA, U2, and VT2 respectively. The singular values/vectors */ 00511 /* which were not deflated go into the first K slots of DSIGMA, U2, */ 00512 /* and VT2 respectively, while those which were deflated go into the */ 00513 /* last N - K slots, except that the first column/row will be treated */ 00514 /* separately. */ 00515 00516 i__1 = n; 00517 for (j = 2; j <= i__1; ++j) { 00518 jp = idxp[j]; 00519 dsigma[j] = d__[jp]; 00520 idxj = idxq[idx[idxp[idxc[j]]] + 1]; 00521 if (idxj <= nlp1) { 00522 --idxj; 00523 } 00524 dcopy_(&n, &u[idxj * u_dim1 + 1], &c__1, &u2[j * u2_dim1 + 1], &c__1); 00525 dcopy_(&m, &vt[idxj + vt_dim1], ldvt, &vt2[j + vt2_dim1], ldvt2); 00526 /* L160: */ 00527 } 00528 00529 /* Determine DSIGMA(1), DSIGMA(2) and Z(1) */ 00530 00531 dsigma[1] = 0.; 00532 hlftol = tol / 2.; 00533 if (abs(dsigma[2]) <= hlftol) { 00534 dsigma[2] = hlftol; 00535 } 00536 if (m > n) { 00537 z__[1] = dlapy2_(&z1, &z__[m]); 00538 if (z__[1] <= tol) { 00539 c__ = 1.; 00540 s = 0.; 00541 z__[1] = tol; 00542 } else { 00543 c__ = z1 / z__[1]; 00544 s = z__[m] / z__[1]; 00545 } 00546 } else { 00547 if (abs(z1) <= tol) { 00548 z__[1] = tol; 00549 } else { 00550 z__[1] = z1; 00551 } 00552 } 00553 00554 /* Move the rest of the updating row to Z. */ 00555 00556 i__1 = *k - 1; 00557 dcopy_(&i__1, &u2[u2_dim1 + 2], &c__1, &z__[2], &c__1); 00558 00559 /* Determine the first column of U2, the first row of VT2 and the */ 00560 /* last row of VT. */ 00561 00562 dlaset_("A", &n, &c__1, &c_b30, &c_b30, &u2[u2_offset], ldu2); 00563 u2[nlp1 + u2_dim1] = 1.; 00564 if (m > n) { 00565 i__1 = nlp1; 00566 for (i__ = 1; i__ <= i__1; ++i__) { 00567 vt[m + i__ * vt_dim1] = -s * vt[nlp1 + i__ * vt_dim1]; 00568 vt2[i__ * vt2_dim1 + 1] = c__ * vt[nlp1 + i__ * vt_dim1]; 00569 /* L170: */ 00570 } 00571 i__1 = m; 00572 for (i__ = nlp2; i__ <= i__1; ++i__) { 00573 vt2[i__ * vt2_dim1 + 1] = s * vt[m + i__ * vt_dim1]; 00574 vt[m + i__ * vt_dim1] = c__ * vt[m + i__ * vt_dim1]; 00575 /* L180: */ 00576 } 00577 } else { 00578 dcopy_(&m, &vt[nlp1 + vt_dim1], ldvt, &vt2[vt2_dim1 + 1], ldvt2); 00579 } 00580 if (m > n) { 00581 dcopy_(&m, &vt[m + vt_dim1], ldvt, &vt2[m + vt2_dim1], ldvt2); 00582 } 00583 00584 /* The deflated singular values and their corresponding vectors go */ 00585 /* into the back of D, U, and V respectively. */ 00586 00587 if (n > *k) { 00588 i__1 = n - *k; 00589 dcopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1); 00590 i__1 = n - *k; 00591 dlacpy_("A", &n, &i__1, &u2[(*k + 1) * u2_dim1 + 1], ldu2, &u[(*k + 1) 00592 * u_dim1 + 1], ldu); 00593 i__1 = n - *k; 00594 dlacpy_("A", &i__1, &m, &vt2[*k + 1 + vt2_dim1], ldvt2, &vt[*k + 1 + 00595 vt_dim1], ldvt); 00596 } 00597 00598 /* Copy CTOT into COLTYP for referencing in DLASD3. */ 00599 00600 for (j = 1; j <= 4; ++j) { 00601 coltyp[j] = ctot[j - 1]; 00602 /* L190: */ 00603 } 00604 00605 return 0; 00606 00607 /* End of DLASD2 */ 00608 00609 } /* dlasd2_ */