00001 /* dlarz.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 static doublereal c_b5 = 1.; 00020 00021 /* Subroutine */ int dlarz_(char *side, integer *m, integer *n, integer *l, 00022 doublereal *v, integer *incv, doublereal *tau, doublereal *c__, 00023 integer *ldc, doublereal *work) 00024 { 00025 /* System generated locals */ 00026 integer c_dim1, c_offset; 00027 doublereal d__1; 00028 00029 /* Local variables */ 00030 extern /* Subroutine */ int dger_(integer *, integer *, doublereal *, 00031 doublereal *, integer *, doublereal *, integer *, doublereal *, 00032 integer *); 00033 extern logical lsame_(char *, char *); 00034 extern /* Subroutine */ int dgemv_(char *, integer *, integer *, 00035 doublereal *, doublereal *, integer *, doublereal *, integer *, 00036 doublereal *, doublereal *, integer *), dcopy_(integer *, 00037 doublereal *, integer *, doublereal *, integer *), daxpy_(integer 00038 *, doublereal *, doublereal *, integer *, doublereal *, integer *) 00039 ; 00040 00041 00042 /* -- LAPACK routine (version 3.2) -- */ 00043 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00044 /* November 2006 */ 00045 00046 /* .. Scalar Arguments .. */ 00047 /* .. */ 00048 /* .. Array Arguments .. */ 00049 /* .. */ 00050 00051 /* Purpose */ 00052 /* ======= */ 00053 00054 /* DLARZ applies a real elementary reflector H to a real M-by-N */ 00055 /* matrix C, from either the left or the right. H is represented in the */ 00056 /* form */ 00057 00058 /* H = I - tau * v * v' */ 00059 00060 /* where tau is a real scalar and v is a real vector. */ 00061 00062 /* If tau = 0, then H is taken to be the unit matrix. */ 00063 00064 00065 /* H is a product of k elementary reflectors as returned by DTZRZF. */ 00066 00067 /* Arguments */ 00068 /* ========= */ 00069 00070 /* SIDE (input) CHARACTER*1 */ 00071 /* = 'L': form H * C */ 00072 /* = 'R': form C * H */ 00073 00074 /* M (input) INTEGER */ 00075 /* The number of rows of the matrix C. */ 00076 00077 /* N (input) INTEGER */ 00078 /* The number of columns of the matrix C. */ 00079 00080 /* L (input) INTEGER */ 00081 /* The number of entries of the vector V containing */ 00082 /* the meaningful part of the Householder vectors. */ 00083 /* If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0. */ 00084 00085 /* V (input) DOUBLE PRECISION array, dimension (1+(L-1)*abs(INCV)) */ 00086 /* The vector v in the representation of H as returned by */ 00087 /* DTZRZF. V is not used if TAU = 0. */ 00088 00089 /* INCV (input) INTEGER */ 00090 /* The increment between elements of v. INCV <> 0. */ 00091 00092 /* TAU (input) DOUBLE PRECISION */ 00093 /* The value tau in the representation of H. */ 00094 00095 /* C (input/output) DOUBLE PRECISION array, dimension (LDC,N) */ 00096 /* On entry, the M-by-N matrix C. */ 00097 /* On exit, C is overwritten by the matrix H * C if SIDE = 'L', */ 00098 /* or C * H if SIDE = 'R'. */ 00099 00100 /* LDC (input) INTEGER */ 00101 /* The leading dimension of the array C. LDC >= max(1,M). */ 00102 00103 /* WORK (workspace) DOUBLE PRECISION array, dimension */ 00104 /* (N) if SIDE = 'L' */ 00105 /* or (M) if SIDE = 'R' */ 00106 00107 /* Further Details */ 00108 /* =============== */ 00109 00110 /* Based on contributions by */ 00111 /* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */ 00112 00113 /* ===================================================================== */ 00114 00115 /* .. Parameters .. */ 00116 /* .. */ 00117 /* .. External Subroutines .. */ 00118 /* .. */ 00119 /* .. External Functions .. */ 00120 /* .. */ 00121 /* .. Executable Statements .. */ 00122 00123 /* Parameter adjustments */ 00124 --v; 00125 c_dim1 = *ldc; 00126 c_offset = 1 + c_dim1; 00127 c__ -= c_offset; 00128 --work; 00129 00130 /* Function Body */ 00131 if (lsame_(side, "L")) { 00132 00133 /* Form H * C */ 00134 00135 if (*tau != 0.) { 00136 00137 /* w( 1:n ) = C( 1, 1:n ) */ 00138 00139 dcopy_(n, &c__[c_offset], ldc, &work[1], &c__1); 00140 00141 /* w( 1:n ) = w( 1:n ) + C( m-l+1:m, 1:n )' * v( 1:l ) */ 00142 00143 dgemv_("Transpose", l, n, &c_b5, &c__[*m - *l + 1 + c_dim1], ldc, 00144 &v[1], incv, &c_b5, &work[1], &c__1); 00145 00146 /* C( 1, 1:n ) = C( 1, 1:n ) - tau * w( 1:n ) */ 00147 00148 d__1 = -(*tau); 00149 daxpy_(n, &d__1, &work[1], &c__1, &c__[c_offset], ldc); 00150 00151 /* C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ... */ 00152 /* tau * v( 1:l ) * w( 1:n )' */ 00153 00154 d__1 = -(*tau); 00155 dger_(l, n, &d__1, &v[1], incv, &work[1], &c__1, &c__[*m - *l + 1 00156 + c_dim1], ldc); 00157 } 00158 00159 } else { 00160 00161 /* Form C * H */ 00162 00163 if (*tau != 0.) { 00164 00165 /* w( 1:m ) = C( 1:m, 1 ) */ 00166 00167 dcopy_(m, &c__[c_offset], &c__1, &work[1], &c__1); 00168 00169 /* w( 1:m ) = w( 1:m ) + C( 1:m, n-l+1:n, 1:n ) * v( 1:l ) */ 00170 00171 dgemv_("No transpose", m, l, &c_b5, &c__[(*n - *l + 1) * c_dim1 + 00172 1], ldc, &v[1], incv, &c_b5, &work[1], &c__1); 00173 00174 /* C( 1:m, 1 ) = C( 1:m, 1 ) - tau * w( 1:m ) */ 00175 00176 d__1 = -(*tau); 00177 daxpy_(m, &d__1, &work[1], &c__1, &c__[c_offset], &c__1); 00178 00179 /* C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ... */ 00180 /* tau * w( 1:m ) * v( 1:l )' */ 00181 00182 d__1 = -(*tau); 00183 dger_(m, l, &d__1, &work[1], &c__1, &v[1], incv, &c__[(*n - *l + 00184 1) * c_dim1 + 1], ldc); 00185 00186 } 00187 00188 } 00189 00190 return 0; 00191 00192 /* End of DLARZ */ 00193 00194 } /* dlarz_ */