00001 /* dlaqgb.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int dlaqgb_(integer *m, integer *n, integer *kl, integer *ku, 00017 doublereal *ab, integer *ldab, doublereal *r__, doublereal *c__, 00018 doublereal *rowcnd, doublereal *colcnd, doublereal *amax, char *equed) 00019 { 00020 /* System generated locals */ 00021 integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5, i__6; 00022 00023 /* Local variables */ 00024 integer i__, j; 00025 doublereal cj, large, small; 00026 extern doublereal dlamch_(char *); 00027 00028 00029 /* -- LAPACK auxiliary routine (version 3.2) -- */ 00030 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00031 /* November 2006 */ 00032 00033 /* .. Scalar Arguments .. */ 00034 /* .. */ 00035 /* .. Array Arguments .. */ 00036 /* .. */ 00037 00038 /* Purpose */ 00039 /* ======= */ 00040 00041 /* DLAQGB equilibrates a general M by N band matrix A with KL */ 00042 /* subdiagonals and KU superdiagonals using the row and scaling factors */ 00043 /* in the vectors R and C. */ 00044 00045 /* Arguments */ 00046 /* ========= */ 00047 00048 /* M (input) INTEGER */ 00049 /* The number of rows of the matrix A. M >= 0. */ 00050 00051 /* N (input) INTEGER */ 00052 /* The number of columns of the matrix A. N >= 0. */ 00053 00054 /* KL (input) INTEGER */ 00055 /* The number of subdiagonals within the band of A. KL >= 0. */ 00056 00057 /* KU (input) INTEGER */ 00058 /* The number of superdiagonals within the band of A. KU >= 0. */ 00059 00060 /* AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N) */ 00061 /* On entry, the matrix A in band storage, in rows 1 to KL+KU+1. */ 00062 /* The j-th column of A is stored in the j-th column of the */ 00063 /* array AB as follows: */ 00064 /* AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl) */ 00065 00066 /* On exit, the equilibrated matrix, in the same storage format */ 00067 /* as A. See EQUED for the form of the equilibrated matrix. */ 00068 00069 /* LDAB (input) INTEGER */ 00070 /* The leading dimension of the array AB. LDA >= KL+KU+1. */ 00071 00072 /* R (input) DOUBLE PRECISION array, dimension (M) */ 00073 /* The row scale factors for A. */ 00074 00075 /* C (input) DOUBLE PRECISION array, dimension (N) */ 00076 /* The column scale factors for A. */ 00077 00078 /* ROWCND (input) DOUBLE PRECISION */ 00079 /* Ratio of the smallest R(i) to the largest R(i). */ 00080 00081 /* COLCND (input) DOUBLE PRECISION */ 00082 /* Ratio of the smallest C(i) to the largest C(i). */ 00083 00084 /* AMAX (input) DOUBLE PRECISION */ 00085 /* Absolute value of largest matrix entry. */ 00086 00087 /* EQUED (output) CHARACTER*1 */ 00088 /* Specifies the form of equilibration that was done. */ 00089 /* = 'N': No equilibration */ 00090 /* = 'R': Row equilibration, i.e., A has been premultiplied by */ 00091 /* diag(R). */ 00092 /* = 'C': Column equilibration, i.e., A has been postmultiplied */ 00093 /* by diag(C). */ 00094 /* = 'B': Both row and column equilibration, i.e., A has been */ 00095 /* replaced by diag(R) * A * diag(C). */ 00096 00097 /* Internal Parameters */ 00098 /* =================== */ 00099 00100 /* THRESH is a threshold value used to decide if row or column scaling */ 00101 /* should be done based on the ratio of the row or column scaling */ 00102 /* factors. If ROWCND < THRESH, row scaling is done, and if */ 00103 /* COLCND < THRESH, column scaling is done. */ 00104 00105 /* LARGE and SMALL are threshold values used to decide if row scaling */ 00106 /* should be done based on the absolute size of the largest matrix */ 00107 /* element. If AMAX > LARGE or AMAX < SMALL, row scaling is done. */ 00108 00109 /* ===================================================================== */ 00110 00111 /* .. Parameters .. */ 00112 /* .. */ 00113 /* .. Local Scalars .. */ 00114 /* .. */ 00115 /* .. External Functions .. */ 00116 /* .. */ 00117 /* .. Intrinsic Functions .. */ 00118 /* .. */ 00119 /* .. Executable Statements .. */ 00120 00121 /* Quick return if possible */ 00122 00123 /* Parameter adjustments */ 00124 ab_dim1 = *ldab; 00125 ab_offset = 1 + ab_dim1; 00126 ab -= ab_offset; 00127 --r__; 00128 --c__; 00129 00130 /* Function Body */ 00131 if (*m <= 0 || *n <= 0) { 00132 *(unsigned char *)equed = 'N'; 00133 return 0; 00134 } 00135 00136 /* Initialize LARGE and SMALL. */ 00137 00138 small = dlamch_("Safe minimum") / dlamch_("Precision"); 00139 large = 1. / small; 00140 00141 if (*rowcnd >= .1 && *amax >= small && *amax <= large) { 00142 00143 /* No row scaling */ 00144 00145 if (*colcnd >= .1) { 00146 00147 /* No column scaling */ 00148 00149 *(unsigned char *)equed = 'N'; 00150 } else { 00151 00152 /* Column scaling */ 00153 00154 i__1 = *n; 00155 for (j = 1; j <= i__1; ++j) { 00156 cj = c__[j]; 00157 /* Computing MAX */ 00158 i__2 = 1, i__3 = j - *ku; 00159 /* Computing MIN */ 00160 i__5 = *m, i__6 = j + *kl; 00161 i__4 = min(i__5,i__6); 00162 for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) { 00163 ab[*ku + 1 + i__ - j + j * ab_dim1] = cj * ab[*ku + 1 + 00164 i__ - j + j * ab_dim1]; 00165 /* L10: */ 00166 } 00167 /* L20: */ 00168 } 00169 *(unsigned char *)equed = 'C'; 00170 } 00171 } else if (*colcnd >= .1) { 00172 00173 /* Row scaling, no column scaling */ 00174 00175 i__1 = *n; 00176 for (j = 1; j <= i__1; ++j) { 00177 /* Computing MAX */ 00178 i__4 = 1, i__2 = j - *ku; 00179 /* Computing MIN */ 00180 i__5 = *m, i__6 = j + *kl; 00181 i__3 = min(i__5,i__6); 00182 for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) { 00183 ab[*ku + 1 + i__ - j + j * ab_dim1] = r__[i__] * ab[*ku + 1 + 00184 i__ - j + j * ab_dim1]; 00185 /* L30: */ 00186 } 00187 /* L40: */ 00188 } 00189 *(unsigned char *)equed = 'R'; 00190 } else { 00191 00192 /* Row and column scaling */ 00193 00194 i__1 = *n; 00195 for (j = 1; j <= i__1; ++j) { 00196 cj = c__[j]; 00197 /* Computing MAX */ 00198 i__3 = 1, i__4 = j - *ku; 00199 /* Computing MIN */ 00200 i__5 = *m, i__6 = j + *kl; 00201 i__2 = min(i__5,i__6); 00202 for (i__ = max(i__3,i__4); i__ <= i__2; ++i__) { 00203 ab[*ku + 1 + i__ - j + j * ab_dim1] = cj * r__[i__] * ab[*ku 00204 + 1 + i__ - j + j * ab_dim1]; 00205 /* L50: */ 00206 } 00207 /* L60: */ 00208 } 00209 *(unsigned char *)equed = 'B'; 00210 } 00211 00212 return 0; 00213 00214 /* End of DLAQGB */ 00215 00216 } /* dlaqgb_ */