00001 /* dgtt02.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static doublereal c_b6 = -1.; 00019 static doublereal c_b7 = 1.; 00020 static integer c__1 = 1; 00021 00022 /* Subroutine */ int dgtt02_(char *trans, integer *n, integer *nrhs, 00023 doublereal *dl, doublereal *d__, doublereal *du, doublereal *x, 00024 integer *ldx, doublereal *b, integer *ldb, doublereal *rwork, 00025 doublereal *resid) 00026 { 00027 /* System generated locals */ 00028 integer b_dim1, b_offset, x_dim1, x_offset, i__1; 00029 doublereal d__1, d__2; 00030 00031 /* Local variables */ 00032 integer j; 00033 doublereal eps; 00034 extern logical lsame_(char *, char *); 00035 extern doublereal dasum_(integer *, doublereal *, integer *); 00036 doublereal anorm, bnorm, xnorm; 00037 extern doublereal dlamch_(char *); 00038 extern /* Subroutine */ int dlagtm_(char *, integer *, integer *, 00039 doublereal *, doublereal *, doublereal *, doublereal *, 00040 doublereal *, integer *, doublereal *, doublereal *, integer *); 00041 extern doublereal dlangt_(char *, integer *, doublereal *, doublereal *, 00042 doublereal *); 00043 00044 00045 /* -- LAPACK test routine (version 3.1) -- */ 00046 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00047 /* November 2006 */ 00048 00049 /* .. Scalar Arguments .. */ 00050 /* .. */ 00051 /* .. Array Arguments .. */ 00052 /* .. */ 00053 00054 /* Purpose */ 00055 /* ======= */ 00056 00057 /* DGTT02 computes the residual for the solution to a tridiagonal */ 00058 /* system of equations: */ 00059 /* RESID = norm(B - op(A)*X) / (norm(A) * norm(X) * EPS), */ 00060 /* where EPS is the machine epsilon. */ 00061 00062 /* Arguments */ 00063 /* ========= */ 00064 00065 /* TRANS (input) CHARACTER */ 00066 /* Specifies the form of the residual. */ 00067 /* = 'N': B - A * X (No transpose) */ 00068 /* = 'T': B - A'* X (Transpose) */ 00069 /* = 'C': B - A'* X (Conjugate transpose = Transpose) */ 00070 00071 /* N (input) INTEGTER */ 00072 /* The order of the matrix A. N >= 0. */ 00073 00074 /* NRHS (input) INTEGER */ 00075 /* The number of right hand sides, i.e., the number of columns */ 00076 /* of the matrices B and X. NRHS >= 0. */ 00077 00078 /* DL (input) DOUBLE PRECISION array, dimension (N-1) */ 00079 /* The (n-1) sub-diagonal elements of A. */ 00080 00081 /* D (input) DOUBLE PRECISION array, dimension (N) */ 00082 /* The diagonal elements of A. */ 00083 00084 /* DU (input) DOUBLE PRECISION array, dimension (N-1) */ 00085 /* The (n-1) super-diagonal elements of A. */ 00086 00087 /* X (input) DOUBLE PRECISION array, dimension (LDX,NRHS) */ 00088 /* The computed solution vectors X. */ 00089 00090 /* LDX (input) INTEGER */ 00091 /* The leading dimension of the array X. LDX >= max(1,N). */ 00092 00093 /* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */ 00094 /* On entry, the right hand side vectors for the system of */ 00095 /* linear equations. */ 00096 /* On exit, B is overwritten with the difference B - op(A)*X. */ 00097 00098 /* LDB (input) INTEGER */ 00099 /* The leading dimension of the array B. LDB >= max(1,N). */ 00100 00101 /* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */ 00102 00103 /* RESID (output) DOUBLE PRECISION */ 00104 /* norm(B - op(A)*X) / (norm(A) * norm(X) * EPS) */ 00105 00106 /* ===================================================================== */ 00107 00108 /* .. Parameters .. */ 00109 /* .. */ 00110 /* .. Local Scalars .. */ 00111 /* .. */ 00112 /* .. External Functions .. */ 00113 /* .. */ 00114 /* .. External Subroutines .. */ 00115 /* .. */ 00116 /* .. Intrinsic Functions .. */ 00117 /* .. */ 00118 /* .. Executable Statements .. */ 00119 00120 /* Quick exit if N = 0 or NRHS = 0 */ 00121 00122 /* Parameter adjustments */ 00123 --dl; 00124 --d__; 00125 --du; 00126 x_dim1 = *ldx; 00127 x_offset = 1 + x_dim1; 00128 x -= x_offset; 00129 b_dim1 = *ldb; 00130 b_offset = 1 + b_dim1; 00131 b -= b_offset; 00132 --rwork; 00133 00134 /* Function Body */ 00135 *resid = 0.; 00136 if (*n <= 0 || *nrhs == 0) { 00137 return 0; 00138 } 00139 00140 /* Compute the maximum over the number of right hand sides of */ 00141 /* norm(B - op(A)*X) / ( norm(A) * norm(X) * EPS ). */ 00142 00143 if (lsame_(trans, "N")) { 00144 anorm = dlangt_("1", n, &dl[1], &d__[1], &du[1]); 00145 } else { 00146 anorm = dlangt_("I", n, &dl[1], &d__[1], &du[1]); 00147 } 00148 00149 /* Exit with RESID = 1/EPS if ANORM = 0. */ 00150 00151 eps = dlamch_("Epsilon"); 00152 if (anorm <= 0.) { 00153 *resid = 1. / eps; 00154 return 0; 00155 } 00156 00157 /* Compute B - op(A)*X. */ 00158 00159 dlagtm_(trans, n, nrhs, &c_b6, &dl[1], &d__[1], &du[1], &x[x_offset], ldx, 00160 &c_b7, &b[b_offset], ldb); 00161 00162 i__1 = *nrhs; 00163 for (j = 1; j <= i__1; ++j) { 00164 bnorm = dasum_(n, &b[j * b_dim1 + 1], &c__1); 00165 xnorm = dasum_(n, &x[j * x_dim1 + 1], &c__1); 00166 if (xnorm <= 0.) { 00167 *resid = 1. / eps; 00168 } else { 00169 /* Computing MAX */ 00170 d__1 = *resid, d__2 = bnorm / anorm / xnorm / eps; 00171 *resid = max(d__1,d__2); 00172 } 00173 /* L10: */ 00174 } 00175 00176 return 0; 00177 00178 /* End of DGTT02 */ 00179 00180 } /* dgtt02_ */