00001 /* dgetf2.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 static doublereal c_b8 = -1.; 00020 00021 /* Subroutine */ int dgetf2_(integer *m, integer *n, doublereal *a, integer * 00022 lda, integer *ipiv, integer *info) 00023 { 00024 /* System generated locals */ 00025 integer a_dim1, a_offset, i__1, i__2, i__3; 00026 doublereal d__1; 00027 00028 /* Local variables */ 00029 integer i__, j, jp; 00030 extern /* Subroutine */ int dger_(integer *, integer *, doublereal *, 00031 doublereal *, integer *, doublereal *, integer *, doublereal *, 00032 integer *), dscal_(integer *, doublereal *, doublereal *, integer 00033 *); 00034 doublereal sfmin; 00035 extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *, 00036 doublereal *, integer *); 00037 extern doublereal dlamch_(char *); 00038 extern integer idamax_(integer *, doublereal *, integer *); 00039 extern /* Subroutine */ int xerbla_(char *, integer *); 00040 00041 00042 /* -- LAPACK routine (version 3.2) -- */ 00043 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00044 /* November 2006 */ 00045 00046 /* .. Scalar Arguments .. */ 00047 /* .. */ 00048 /* .. Array Arguments .. */ 00049 /* .. */ 00050 00051 /* Purpose */ 00052 /* ======= */ 00053 00054 /* DGETF2 computes an LU factorization of a general m-by-n matrix A */ 00055 /* using partial pivoting with row interchanges. */ 00056 00057 /* The factorization has the form */ 00058 /* A = P * L * U */ 00059 /* where P is a permutation matrix, L is lower triangular with unit */ 00060 /* diagonal elements (lower trapezoidal if m > n), and U is upper */ 00061 /* triangular (upper trapezoidal if m < n). */ 00062 00063 /* This is the right-looking Level 2 BLAS version of the algorithm. */ 00064 00065 /* Arguments */ 00066 /* ========= */ 00067 00068 /* M (input) INTEGER */ 00069 /* The number of rows of the matrix A. M >= 0. */ 00070 00071 /* N (input) INTEGER */ 00072 /* The number of columns of the matrix A. N >= 0. */ 00073 00074 /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */ 00075 /* On entry, the m by n matrix to be factored. */ 00076 /* On exit, the factors L and U from the factorization */ 00077 /* A = P*L*U; the unit diagonal elements of L are not stored. */ 00078 00079 /* LDA (input) INTEGER */ 00080 /* The leading dimension of the array A. LDA >= max(1,M). */ 00081 00082 /* IPIV (output) INTEGER array, dimension (min(M,N)) */ 00083 /* The pivot indices; for 1 <= i <= min(M,N), row i of the */ 00084 /* matrix was interchanged with row IPIV(i). */ 00085 00086 /* INFO (output) INTEGER */ 00087 /* = 0: successful exit */ 00088 /* < 0: if INFO = -k, the k-th argument had an illegal value */ 00089 /* > 0: if INFO = k, U(k,k) is exactly zero. The factorization */ 00090 /* has been completed, but the factor U is exactly */ 00091 /* singular, and division by zero will occur if it is used */ 00092 /* to solve a system of equations. */ 00093 00094 /* ===================================================================== */ 00095 00096 /* .. Parameters .. */ 00097 /* .. */ 00098 /* .. Local Scalars .. */ 00099 /* .. */ 00100 /* .. External Functions .. */ 00101 /* .. */ 00102 /* .. External Subroutines .. */ 00103 /* .. */ 00104 /* .. Intrinsic Functions .. */ 00105 /* .. */ 00106 /* .. Executable Statements .. */ 00107 00108 /* Test the input parameters. */ 00109 00110 /* Parameter adjustments */ 00111 a_dim1 = *lda; 00112 a_offset = 1 + a_dim1; 00113 a -= a_offset; 00114 --ipiv; 00115 00116 /* Function Body */ 00117 *info = 0; 00118 if (*m < 0) { 00119 *info = -1; 00120 } else if (*n < 0) { 00121 *info = -2; 00122 } else if (*lda < max(1,*m)) { 00123 *info = -4; 00124 } 00125 if (*info != 0) { 00126 i__1 = -(*info); 00127 xerbla_("DGETF2", &i__1); 00128 return 0; 00129 } 00130 00131 /* Quick return if possible */ 00132 00133 if (*m == 0 || *n == 0) { 00134 return 0; 00135 } 00136 00137 /* Compute machine safe minimum */ 00138 00139 sfmin = dlamch_("S"); 00140 00141 i__1 = min(*m,*n); 00142 for (j = 1; j <= i__1; ++j) { 00143 00144 /* Find pivot and test for singularity. */ 00145 00146 i__2 = *m - j + 1; 00147 jp = j - 1 + idamax_(&i__2, &a[j + j * a_dim1], &c__1); 00148 ipiv[j] = jp; 00149 if (a[jp + j * a_dim1] != 0.) { 00150 00151 /* Apply the interchange to columns 1:N. */ 00152 00153 if (jp != j) { 00154 dswap_(n, &a[j + a_dim1], lda, &a[jp + a_dim1], lda); 00155 } 00156 00157 /* Compute elements J+1:M of J-th column. */ 00158 00159 if (j < *m) { 00160 if ((d__1 = a[j + j * a_dim1], abs(d__1)) >= sfmin) { 00161 i__2 = *m - j; 00162 d__1 = 1. / a[j + j * a_dim1]; 00163 dscal_(&i__2, &d__1, &a[j + 1 + j * a_dim1], &c__1); 00164 } else { 00165 i__2 = *m - j; 00166 for (i__ = 1; i__ <= i__2; ++i__) { 00167 a[j + i__ + j * a_dim1] /= a[j + j * a_dim1]; 00168 /* L20: */ 00169 } 00170 } 00171 } 00172 00173 } else if (*info == 0) { 00174 00175 *info = j; 00176 } 00177 00178 if (j < min(*m,*n)) { 00179 00180 /* Update trailing submatrix. */ 00181 00182 i__2 = *m - j; 00183 i__3 = *n - j; 00184 dger_(&i__2, &i__3, &c_b8, &a[j + 1 + j * a_dim1], &c__1, &a[j + ( 00185 j + 1) * a_dim1], lda, &a[j + 1 + (j + 1) * a_dim1], lda); 00186 } 00187 /* L10: */ 00188 } 00189 return 0; 00190 00191 /* End of DGETF2 */ 00192 00193 } /* dgetf2_ */