dgerq2.c
Go to the documentation of this file.
00001 /* dgerq2.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Subroutine */ int dgerq2_(integer *m, integer *n, doublereal *a, integer *
00017         lda, doublereal *tau, doublereal *work, integer *info)
00018 {
00019     /* System generated locals */
00020     integer a_dim1, a_offset, i__1, i__2;
00021 
00022     /* Local variables */
00023     integer i__, k;
00024     doublereal aii;
00025     extern /* Subroutine */ int dlarf_(char *, integer *, integer *, 
00026             doublereal *, integer *, doublereal *, doublereal *, integer *, 
00027             doublereal *), dlarfp_(integer *, doublereal *, 
00028             doublereal *, integer *, doublereal *), xerbla_(char *, integer *);
00029 
00030 
00031 /*  -- LAPACK routine (version 3.2) -- */
00032 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00033 /*     November 2006 */
00034 
00035 /*     .. Scalar Arguments .. */
00036 /*     .. */
00037 /*     .. Array Arguments .. */
00038 /*     .. */
00039 
00040 /*  Purpose */
00041 /*  ======= */
00042 
00043 /*  DGERQ2 computes an RQ factorization of a real m by n matrix A: */
00044 /*  A = R * Q. */
00045 
00046 /*  Arguments */
00047 /*  ========= */
00048 
00049 /*  M       (input) INTEGER */
00050 /*          The number of rows of the matrix A.  M >= 0. */
00051 
00052 /*  N       (input) INTEGER */
00053 /*          The number of columns of the matrix A.  N >= 0. */
00054 
00055 /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
00056 /*          On entry, the m by n matrix A. */
00057 /*          On exit, if m <= n, the upper triangle of the subarray */
00058 /*          A(1:m,n-m+1:n) contains the m by m upper triangular matrix R; */
00059 /*          if m >= n, the elements on and above the (m-n)-th subdiagonal */
00060 /*          contain the m by n upper trapezoidal matrix R; the remaining */
00061 /*          elements, with the array TAU, represent the orthogonal matrix */
00062 /*          Q as a product of elementary reflectors (see Further */
00063 /*          Details). */
00064 
00065 /*  LDA     (input) INTEGER */
00066 /*          The leading dimension of the array A.  LDA >= max(1,M). */
00067 
00068 /*  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N)) */
00069 /*          The scalar factors of the elementary reflectors (see Further */
00070 /*          Details). */
00071 
00072 /*  WORK    (workspace) DOUBLE PRECISION array, dimension (M) */
00073 
00074 /*  INFO    (output) INTEGER */
00075 /*          = 0: successful exit */
00076 /*          < 0: if INFO = -i, the i-th argument had an illegal value */
00077 
00078 /*  Further Details */
00079 /*  =============== */
00080 
00081 /*  The matrix Q is represented as a product of elementary reflectors */
00082 
00083 /*     Q = H(1) H(2) . . . H(k), where k = min(m,n). */
00084 
00085 /*  Each H(i) has the form */
00086 
00087 /*     H(i) = I - tau * v * v' */
00088 
00089 /*  where tau is a real scalar, and v is a real vector with */
00090 /*  v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in */
00091 /*  A(m-k+i,1:n-k+i-1), and tau in TAU(i). */
00092 
00093 /*  ===================================================================== */
00094 
00095 /*     .. Parameters .. */
00096 /*     .. */
00097 /*     .. Local Scalars .. */
00098 /*     .. */
00099 /*     .. External Subroutines .. */
00100 /*     .. */
00101 /*     .. Intrinsic Functions .. */
00102 /*     .. */
00103 /*     .. Executable Statements .. */
00104 
00105 /*     Test the input arguments */
00106 
00107     /* Parameter adjustments */
00108     a_dim1 = *lda;
00109     a_offset = 1 + a_dim1;
00110     a -= a_offset;
00111     --tau;
00112     --work;
00113 
00114     /* Function Body */
00115     *info = 0;
00116     if (*m < 0) {
00117         *info = -1;
00118     } else if (*n < 0) {
00119         *info = -2;
00120     } else if (*lda < max(1,*m)) {
00121         *info = -4;
00122     }
00123     if (*info != 0) {
00124         i__1 = -(*info);
00125         xerbla_("DGERQ2", &i__1);
00126         return 0;
00127     }
00128 
00129     k = min(*m,*n);
00130 
00131     for (i__ = k; i__ >= 1; --i__) {
00132 
00133 /*        Generate elementary reflector H(i) to annihilate */
00134 /*        A(m-k+i,1:n-k+i-1) */
00135 
00136         i__1 = *n - k + i__;
00137         dlarfp_(&i__1, &a[*m - k + i__ + (*n - k + i__) * a_dim1], &a[*m - k 
00138                 + i__ + a_dim1], lda, &tau[i__]);
00139 
00140 /*        Apply H(i) to A(1:m-k+i-1,1:n-k+i) from the right */
00141 
00142         aii = a[*m - k + i__ + (*n - k + i__) * a_dim1];
00143         a[*m - k + i__ + (*n - k + i__) * a_dim1] = 1.;
00144         i__1 = *m - k + i__ - 1;
00145         i__2 = *n - k + i__;
00146         dlarf_("Right", &i__1, &i__2, &a[*m - k + i__ + a_dim1], lda, &tau[
00147                 i__], &a[a_offset], lda, &work[1]);
00148         a[*m - k + i__ + (*n - k + i__) * a_dim1] = aii;
00149 /* L10: */
00150     }
00151     return 0;
00152 
00153 /*     End of DGERQ2 */
00154 
00155 } /* dgerq2_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:44