00001 /* dgeql2.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 00020 /* Subroutine */ int dgeql2_(integer *m, integer *n, doublereal *a, integer * 00021 lda, doublereal *tau, doublereal *work, integer *info) 00022 { 00023 /* System generated locals */ 00024 integer a_dim1, a_offset, i__1, i__2; 00025 00026 /* Local variables */ 00027 integer i__, k; 00028 doublereal aii; 00029 extern /* Subroutine */ int dlarf_(char *, integer *, integer *, 00030 doublereal *, integer *, doublereal *, doublereal *, integer *, 00031 doublereal *), dlarfp_(integer *, doublereal *, 00032 doublereal *, integer *, doublereal *), xerbla_(char *, integer *); 00033 00034 00035 /* -- LAPACK routine (version 3.2) -- */ 00036 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00037 /* November 2006 */ 00038 00039 /* .. Scalar Arguments .. */ 00040 /* .. */ 00041 /* .. Array Arguments .. */ 00042 /* .. */ 00043 00044 /* Purpose */ 00045 /* ======= */ 00046 00047 /* DGEQL2 computes a QL factorization of a real m by n matrix A: */ 00048 /* A = Q * L. */ 00049 00050 /* Arguments */ 00051 /* ========= */ 00052 00053 /* M (input) INTEGER */ 00054 /* The number of rows of the matrix A. M >= 0. */ 00055 00056 /* N (input) INTEGER */ 00057 /* The number of columns of the matrix A. N >= 0. */ 00058 00059 /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */ 00060 /* On entry, the m by n matrix A. */ 00061 /* On exit, if m >= n, the lower triangle of the subarray */ 00062 /* A(m-n+1:m,1:n) contains the n by n lower triangular matrix L; */ 00063 /* if m <= n, the elements on and below the (n-m)-th */ 00064 /* superdiagonal contain the m by n lower trapezoidal matrix L; */ 00065 /* the remaining elements, with the array TAU, represent the */ 00066 /* orthogonal matrix Q as a product of elementary reflectors */ 00067 /* (see Further Details). */ 00068 00069 /* LDA (input) INTEGER */ 00070 /* The leading dimension of the array A. LDA >= max(1,M). */ 00071 00072 /* TAU (output) DOUBLE PRECISION array, dimension (min(M,N)) */ 00073 /* The scalar factors of the elementary reflectors (see Further */ 00074 /* Details). */ 00075 00076 /* WORK (workspace) DOUBLE PRECISION array, dimension (N) */ 00077 00078 /* INFO (output) INTEGER */ 00079 /* = 0: successful exit */ 00080 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00081 00082 /* Further Details */ 00083 /* =============== */ 00084 00085 /* The matrix Q is represented as a product of elementary reflectors */ 00086 00087 /* Q = H(k) . . . H(2) H(1), where k = min(m,n). */ 00088 00089 /* Each H(i) has the form */ 00090 00091 /* H(i) = I - tau * v * v' */ 00092 00093 /* where tau is a real scalar, and v is a real vector with */ 00094 /* v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in */ 00095 /* A(1:m-k+i-1,n-k+i), and tau in TAU(i). */ 00096 00097 /* ===================================================================== */ 00098 00099 /* .. Parameters .. */ 00100 /* .. */ 00101 /* .. Local Scalars .. */ 00102 /* .. */ 00103 /* .. External Subroutines .. */ 00104 /* .. */ 00105 /* .. Intrinsic Functions .. */ 00106 /* .. */ 00107 /* .. Executable Statements .. */ 00108 00109 /* Test the input arguments */ 00110 00111 /* Parameter adjustments */ 00112 a_dim1 = *lda; 00113 a_offset = 1 + a_dim1; 00114 a -= a_offset; 00115 --tau; 00116 --work; 00117 00118 /* Function Body */ 00119 *info = 0; 00120 if (*m < 0) { 00121 *info = -1; 00122 } else if (*n < 0) { 00123 *info = -2; 00124 } else if (*lda < max(1,*m)) { 00125 *info = -4; 00126 } 00127 if (*info != 0) { 00128 i__1 = -(*info); 00129 xerbla_("DGEQL2", &i__1); 00130 return 0; 00131 } 00132 00133 k = min(*m,*n); 00134 00135 for (i__ = k; i__ >= 1; --i__) { 00136 00137 /* Generate elementary reflector H(i) to annihilate */ 00138 /* A(1:m-k+i-1,n-k+i) */ 00139 00140 i__1 = *m - k + i__; 00141 dlarfp_(&i__1, &a[*m - k + i__ + (*n - k + i__) * a_dim1], &a[(*n - k 00142 + i__) * a_dim1 + 1], &c__1, &tau[i__]); 00143 00144 /* Apply H(i) to A(1:m-k+i,1:n-k+i-1) from the left */ 00145 00146 aii = a[*m - k + i__ + (*n - k + i__) * a_dim1]; 00147 a[*m - k + i__ + (*n - k + i__) * a_dim1] = 1.; 00148 i__1 = *m - k + i__; 00149 i__2 = *n - k + i__ - 1; 00150 dlarf_("Left", &i__1, &i__2, &a[(*n - k + i__) * a_dim1 + 1], &c__1, & 00151 tau[i__], &a[a_offset], lda, &work[1]); 00152 a[*m - k + i__ + (*n - k + i__) * a_dim1] = aii; 00153 /* L10: */ 00154 } 00155 return 0; 00156 00157 /* End of DGEQL2 */ 00158 00159 } /* dgeql2_ */