00001 /* dgelq2.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int dgelq2_(integer *m, integer *n, doublereal *a, integer * 00017 lda, doublereal *tau, doublereal *work, integer *info) 00018 { 00019 /* System generated locals */ 00020 integer a_dim1, a_offset, i__1, i__2, i__3; 00021 00022 /* Local variables */ 00023 integer i__, k; 00024 doublereal aii; 00025 extern /* Subroutine */ int dlarf_(char *, integer *, integer *, 00026 doublereal *, integer *, doublereal *, doublereal *, integer *, 00027 doublereal *), dlarfp_(integer *, doublereal *, 00028 doublereal *, integer *, doublereal *), xerbla_(char *, integer *); 00029 00030 00031 /* -- LAPACK routine (version 3.2) -- */ 00032 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00033 /* November 2006 */ 00034 00035 /* .. Scalar Arguments .. */ 00036 /* .. */ 00037 /* .. Array Arguments .. */ 00038 /* .. */ 00039 00040 /* Purpose */ 00041 /* ======= */ 00042 00043 /* DGELQ2 computes an LQ factorization of a real m by n matrix A: */ 00044 /* A = L * Q. */ 00045 00046 /* Arguments */ 00047 /* ========= */ 00048 00049 /* M (input) INTEGER */ 00050 /* The number of rows of the matrix A. M >= 0. */ 00051 00052 /* N (input) INTEGER */ 00053 /* The number of columns of the matrix A. N >= 0. */ 00054 00055 /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */ 00056 /* On entry, the m by n matrix A. */ 00057 /* On exit, the elements on and below the diagonal of the array */ 00058 /* contain the m by min(m,n) lower trapezoidal matrix L (L is */ 00059 /* lower triangular if m <= n); the elements above the diagonal, */ 00060 /* with the array TAU, represent the orthogonal matrix Q as a */ 00061 /* product of elementary reflectors (see Further Details). */ 00062 00063 /* LDA (input) INTEGER */ 00064 /* The leading dimension of the array A. LDA >= max(1,M). */ 00065 00066 /* TAU (output) DOUBLE PRECISION array, dimension (min(M,N)) */ 00067 /* The scalar factors of the elementary reflectors (see Further */ 00068 /* Details). */ 00069 00070 /* WORK (workspace) DOUBLE PRECISION array, dimension (M) */ 00071 00072 /* INFO (output) INTEGER */ 00073 /* = 0: successful exit */ 00074 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00075 00076 /* Further Details */ 00077 /* =============== */ 00078 00079 /* The matrix Q is represented as a product of elementary reflectors */ 00080 00081 /* Q = H(k) . . . H(2) H(1), where k = min(m,n). */ 00082 00083 /* Each H(i) has the form */ 00084 00085 /* H(i) = I - tau * v * v' */ 00086 00087 /* where tau is a real scalar, and v is a real vector with */ 00088 /* v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n), */ 00089 /* and tau in TAU(i). */ 00090 00091 /* ===================================================================== */ 00092 00093 /* .. Parameters .. */ 00094 /* .. */ 00095 /* .. Local Scalars .. */ 00096 /* .. */ 00097 /* .. External Subroutines .. */ 00098 /* .. */ 00099 /* .. Intrinsic Functions .. */ 00100 /* .. */ 00101 /* .. Executable Statements .. */ 00102 00103 /* Test the input arguments */ 00104 00105 /* Parameter adjustments */ 00106 a_dim1 = *lda; 00107 a_offset = 1 + a_dim1; 00108 a -= a_offset; 00109 --tau; 00110 --work; 00111 00112 /* Function Body */ 00113 *info = 0; 00114 if (*m < 0) { 00115 *info = -1; 00116 } else if (*n < 0) { 00117 *info = -2; 00118 } else if (*lda < max(1,*m)) { 00119 *info = -4; 00120 } 00121 if (*info != 0) { 00122 i__1 = -(*info); 00123 xerbla_("DGELQ2", &i__1); 00124 return 0; 00125 } 00126 00127 k = min(*m,*n); 00128 00129 i__1 = k; 00130 for (i__ = 1; i__ <= i__1; ++i__) { 00131 00132 /* Generate elementary reflector H(i) to annihilate A(i,i+1:n) */ 00133 00134 i__2 = *n - i__ + 1; 00135 /* Computing MIN */ 00136 i__3 = i__ + 1; 00137 dlarfp_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + min(i__3, *n)* a_dim1] 00138 , lda, &tau[i__]); 00139 if (i__ < *m) { 00140 00141 /* Apply H(i) to A(i+1:m,i:n) from the right */ 00142 00143 aii = a[i__ + i__ * a_dim1]; 00144 a[i__ + i__ * a_dim1] = 1.; 00145 i__2 = *m - i__; 00146 i__3 = *n - i__ + 1; 00147 dlarf_("Right", &i__2, &i__3, &a[i__ + i__ * a_dim1], lda, &tau[ 00148 i__], &a[i__ + 1 + i__ * a_dim1], lda, &work[1]); 00149 a[i__ + i__ * a_dim1] = aii; 00150 } 00151 /* L10: */ 00152 } 00153 return 0; 00154 00155 /* End of DGELQ2 */ 00156 00157 } /* dgelq2_ */