dgehd2.c
Go to the documentation of this file.
00001 /* dgehd2.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 
00020 /* Subroutine */ int dgehd2_(integer *n, integer *ilo, integer *ihi, 
00021         doublereal *a, integer *lda, doublereal *tau, doublereal *work, 
00022         integer *info)
00023 {
00024     /* System generated locals */
00025     integer a_dim1, a_offset, i__1, i__2, i__3;
00026 
00027     /* Local variables */
00028     integer i__;
00029     doublereal aii;
00030     extern /* Subroutine */ int dlarf_(char *, integer *, integer *, 
00031             doublereal *, integer *, doublereal *, doublereal *, integer *, 
00032             doublereal *), dlarfg_(integer *, doublereal *, 
00033             doublereal *, integer *, doublereal *), xerbla_(char *, integer *);
00034 
00035 
00036 /*  -- LAPACK routine (version 3.2) -- */
00037 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00038 /*     November 2006 */
00039 
00040 /*     .. Scalar Arguments .. */
00041 /*     .. */
00042 /*     .. Array Arguments .. */
00043 /*     .. */
00044 
00045 /*  Purpose */
00046 /*  ======= */
00047 
00048 /*  DGEHD2 reduces a real general matrix A to upper Hessenberg form H by */
00049 /*  an orthogonal similarity transformation:  Q' * A * Q = H . */
00050 
00051 /*  Arguments */
00052 /*  ========= */
00053 
00054 /*  N       (input) INTEGER */
00055 /*          The order of the matrix A.  N >= 0. */
00056 
00057 /*  ILO     (input) INTEGER */
00058 /*  IHI     (input) INTEGER */
00059 /*          It is assumed that A is already upper triangular in rows */
00060 /*          and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally */
00061 /*          set by a previous call to DGEBAL; otherwise they should be */
00062 /*          set to 1 and N respectively. See Further Details. */
00063 /*          1 <= ILO <= IHI <= max(1,N). */
00064 
00065 /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
00066 /*          On entry, the n by n general matrix to be reduced. */
00067 /*          On exit, the upper triangle and the first subdiagonal of A */
00068 /*          are overwritten with the upper Hessenberg matrix H, and the */
00069 /*          elements below the first subdiagonal, with the array TAU, */
00070 /*          represent the orthogonal matrix Q as a product of elementary */
00071 /*          reflectors. See Further Details. */
00072 
00073 /*  LDA     (input) INTEGER */
00074 /*          The leading dimension of the array A.  LDA >= max(1,N). */
00075 
00076 /*  TAU     (output) DOUBLE PRECISION array, dimension (N-1) */
00077 /*          The scalar factors of the elementary reflectors (see Further */
00078 /*          Details). */
00079 
00080 /*  WORK    (workspace) DOUBLE PRECISION array, dimension (N) */
00081 
00082 /*  INFO    (output) INTEGER */
00083 /*          = 0:  successful exit. */
00084 /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
00085 
00086 /*  Further Details */
00087 /*  =============== */
00088 
00089 /*  The matrix Q is represented as a product of (ihi-ilo) elementary */
00090 /*  reflectors */
00091 
00092 /*     Q = H(ilo) H(ilo+1) . . . H(ihi-1). */
00093 
00094 /*  Each H(i) has the form */
00095 
00096 /*     H(i) = I - tau * v * v' */
00097 
00098 /*  where tau is a real scalar, and v is a real vector with */
00099 /*  v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on */
00100 /*  exit in A(i+2:ihi,i), and tau in TAU(i). */
00101 
00102 /*  The contents of A are illustrated by the following example, with */
00103 /*  n = 7, ilo = 2 and ihi = 6: */
00104 
00105 /*  on entry,                        on exit, */
00106 
00107 /*  ( a   a   a   a   a   a   a )    (  a   a   h   h   h   h   a ) */
00108 /*  (     a   a   a   a   a   a )    (      a   h   h   h   h   a ) */
00109 /*  (     a   a   a   a   a   a )    (      h   h   h   h   h   h ) */
00110 /*  (     a   a   a   a   a   a )    (      v2  h   h   h   h   h ) */
00111 /*  (     a   a   a   a   a   a )    (      v2  v3  h   h   h   h ) */
00112 /*  (     a   a   a   a   a   a )    (      v2  v3  v4  h   h   h ) */
00113 /*  (                         a )    (                          a ) */
00114 
00115 /*  where a denotes an element of the original matrix A, h denotes a */
00116 /*  modified element of the upper Hessenberg matrix H, and vi denotes an */
00117 /*  element of the vector defining H(i). */
00118 
00119 /*  ===================================================================== */
00120 
00121 /*     .. Parameters .. */
00122 /*     .. */
00123 /*     .. Local Scalars .. */
00124 /*     .. */
00125 /*     .. External Subroutines .. */
00126 /*     .. */
00127 /*     .. Intrinsic Functions .. */
00128 /*     .. */
00129 /*     .. Executable Statements .. */
00130 
00131 /*     Test the input parameters */
00132 
00133     /* Parameter adjustments */
00134     a_dim1 = *lda;
00135     a_offset = 1 + a_dim1;
00136     a -= a_offset;
00137     --tau;
00138     --work;
00139 
00140     /* Function Body */
00141     *info = 0;
00142     if (*n < 0) {
00143         *info = -1;
00144     } else if (*ilo < 1 || *ilo > max(1,*n)) {
00145         *info = -2;
00146     } else if (*ihi < min(*ilo,*n) || *ihi > *n) {
00147         *info = -3;
00148     } else if (*lda < max(1,*n)) {
00149         *info = -5;
00150     }
00151     if (*info != 0) {
00152         i__1 = -(*info);
00153         xerbla_("DGEHD2", &i__1);
00154         return 0;
00155     }
00156 
00157     i__1 = *ihi - 1;
00158     for (i__ = *ilo; i__ <= i__1; ++i__) {
00159 
00160 /*        Compute elementary reflector H(i) to annihilate A(i+2:ihi,i) */
00161 
00162         i__2 = *ihi - i__;
00163 /* Computing MIN */
00164         i__3 = i__ + 2;
00165         dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3, *n)+ i__ * 
00166                 a_dim1], &c__1, &tau[i__]);
00167         aii = a[i__ + 1 + i__ * a_dim1];
00168         a[i__ + 1 + i__ * a_dim1] = 1.;
00169 
00170 /*        Apply H(i) to A(1:ihi,i+1:ihi) from the right */
00171 
00172         i__2 = *ihi - i__;
00173         dlarf_("Right", ihi, &i__2, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[
00174                 i__], &a[(i__ + 1) * a_dim1 + 1], lda, &work[1]);
00175 
00176 /*        Apply H(i) to A(i+1:ihi,i+1:n) from the left */
00177 
00178         i__2 = *ihi - i__;
00179         i__3 = *n - i__;
00180         dlarf_("Left", &i__2, &i__3, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[
00181                 i__], &a[i__ + 1 + (i__ + 1) * a_dim1], lda, &work[1]);
00182 
00183         a[i__ + 1 + i__ * a_dim1] = aii;
00184 /* L10: */
00185     }
00186 
00187     return 0;
00188 
00189 /*     End of DGEHD2 */
00190 
00191 } /* dgehd2_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:43