dgbrfsx.c
Go to the documentation of this file.
00001 /* dgbrfsx.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c_n1 = -1;
00019 static integer c__0 = 0;
00020 static integer c__1 = 1;
00021 
00022 /* Subroutine */ int dgbrfsx_(char *trans, char *equed, integer *n, integer *
00023         kl, integer *ku, integer *nrhs, doublereal *ab, integer *ldab, 
00024         doublereal *afb, integer *ldafb, integer *ipiv, doublereal *r__, 
00025         doublereal *c__, doublereal *b, integer *ldb, doublereal *x, integer *
00026         ldx, doublereal *rcond, doublereal *berr, integer *n_err_bnds__, 
00027         doublereal *err_bnds_norm__, doublereal *err_bnds_comp__, integer *
00028         nparams, doublereal *params, doublereal *work, integer *iwork, 
00029         integer *info)
00030 {
00031     /* System generated locals */
00032     integer ab_dim1, ab_offset, afb_dim1, afb_offset, b_dim1, b_offset, 
00033             x_dim1, x_offset, err_bnds_norm_dim1, err_bnds_norm_offset, 
00034             err_bnds_comp_dim1, err_bnds_comp_offset, i__1;
00035     doublereal d__1, d__2;
00036 
00037     /* Builtin functions */
00038     double sqrt(doublereal);
00039 
00040     /* Local variables */
00041     doublereal illrcond_thresh__, unstable_thresh__, err_lbnd__;
00042     integer ref_type__;
00043     extern integer ilatrans_(char *);
00044     integer j;
00045     doublereal rcond_tmp__;
00046     integer prec_type__, trans_type__;
00047     extern doublereal dla_gbrcond__(char *, integer *, integer *, integer *, 
00048             doublereal *, integer *, doublereal *, integer *, integer *, 
00049             integer *, doublereal *, integer *, doublereal *, integer *, 
00050             ftnlen);
00051     doublereal cwise_wrong__;
00052     extern /* Subroutine */ int dla_gbrfsx_extended__(integer *, integer *, 
00053             integer *, integer *, integer *, integer *, doublereal *, integer 
00054             *, doublereal *, integer *, integer *, logical *, doublereal *, 
00055             doublereal *, integer *, doublereal *, integer *, doublereal *, 
00056             integer *, doublereal *, doublereal *, doublereal *, doublereal *,
00057              doublereal *, doublereal *, doublereal *, integer *, doublereal *
00058             , doublereal *, logical *, integer *);
00059     char norm[1];
00060     logical ignore_cwise__;
00061     extern logical lsame_(char *, char *);
00062     doublereal anorm;
00063     extern doublereal dlangb_(char *, integer *, integer *, integer *, 
00064             doublereal *, integer *, doublereal *), dlamch_(char *);
00065     extern /* Subroutine */ int dgbcon_(char *, integer *, integer *, integer 
00066             *, doublereal *, integer *, integer *, doublereal *, doublereal *, 
00067              doublereal *, integer *, integer *), xerbla_(char *, 
00068             integer *);
00069     logical colequ, notran, rowequ;
00070     extern integer ilaprec_(char *);
00071     integer ithresh, n_norms__;
00072     doublereal rthresh;
00073 
00074 
00075 /*     -- LAPACK routine (version 3.2.1)                                 -- */
00076 /*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
00077 /*     -- Jason Riedy of Univ. of California Berkeley.                 -- */
00078 /*     -- April 2009                                                   -- */
00079 
00080 /*     -- LAPACK is a software package provided by Univ. of Tennessee, -- */
00081 /*     -- Univ. of California Berkeley and NAG Ltd.                    -- */
00082 
00083 /*     .. */
00084 /*     .. Scalar Arguments .. */
00085 /*     .. */
00086 /*     .. Array Arguments .. */
00087 /*     .. */
00088 
00089 /*     Purpose */
00090 /*     ======= */
00091 
00092 /*     DGBRFSX improves the computed solution to a system of linear */
00093 /*     equations and provides error bounds and backward error estimates */
00094 /*     for the solution.  In addition to normwise error bound, the code */
00095 /*     provides maximum componentwise error bound if possible.  See */
00096 /*     comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the */
00097 /*     error bounds. */
00098 
00099 /*     The original system of linear equations may have been equilibrated */
00100 /*     before calling this routine, as described by arguments EQUED, R */
00101 /*     and C below. In this case, the solution and error bounds returned */
00102 /*     are for the original unequilibrated system. */
00103 
00104 /*     Arguments */
00105 /*     ========= */
00106 
00107 /*     Some optional parameters are bundled in the PARAMS array.  These */
00108 /*     settings determine how refinement is performed, but often the */
00109 /*     defaults are acceptable.  If the defaults are acceptable, users */
00110 /*     can pass NPARAMS = 0 which prevents the source code from accessing */
00111 /*     the PARAMS argument. */
00112 
00113 /*     TRANS   (input) CHARACTER*1 */
00114 /*     Specifies the form of the system of equations: */
00115 /*       = 'N':  A * X = B     (No transpose) */
00116 /*       = 'T':  A**T * X = B  (Transpose) */
00117 /*       = 'C':  A**H * X = B  (Conjugate transpose = Transpose) */
00118 
00119 /*     EQUED   (input) CHARACTER*1 */
00120 /*     Specifies the form of equilibration that was done to A */
00121 /*     before calling this routine. This is needed to compute */
00122 /*     the solution and error bounds correctly. */
00123 /*       = 'N':  No equilibration */
00124 /*       = 'R':  Row equilibration, i.e., A has been premultiplied by */
00125 /*               diag(R). */
00126 /*       = 'C':  Column equilibration, i.e., A has been postmultiplied */
00127 /*               by diag(C). */
00128 /*       = 'B':  Both row and column equilibration, i.e., A has been */
00129 /*               replaced by diag(R) * A * diag(C). */
00130 /*               The right hand side B has been changed accordingly. */
00131 
00132 /*     N       (input) INTEGER */
00133 /*     The order of the matrix A.  N >= 0. */
00134 
00135 /*     KL      (input) INTEGER */
00136 /*     The number of subdiagonals within the band of A.  KL >= 0. */
00137 
00138 /*     KU      (input) INTEGER */
00139 /*     The number of superdiagonals within the band of A.  KU >= 0. */
00140 
00141 /*     NRHS    (input) INTEGER */
00142 /*     The number of right hand sides, i.e., the number of columns */
00143 /*     of the matrices B and X.  NRHS >= 0. */
00144 
00145 /*     AB      (input) DOUBLE PRECISION array, dimension (LDAB,N) */
00146 /*     The original band matrix A, stored in rows 1 to KL+KU+1. */
00147 /*     The j-th column of A is stored in the j-th column of the */
00148 /*     array AB as follows: */
00149 /*     AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl). */
00150 
00151 /*     LDAB    (input) INTEGER */
00152 /*     The leading dimension of the array AB.  LDAB >= KL+KU+1. */
00153 
00154 /*     AFB     (input) DOUBLE PRECISION array, dimension (LDAFB,N) */
00155 /*     Details of the LU factorization of the band matrix A, as */
00156 /*     computed by DGBTRF.  U is stored as an upper triangular band */
00157 /*     matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and */
00158 /*     the multipliers used during the factorization are stored in */
00159 /*     rows KL+KU+2 to 2*KL+KU+1. */
00160 
00161 /*     LDAFB   (input) INTEGER */
00162 /*     The leading dimension of the array AFB.  LDAFB >= 2*KL*KU+1. */
00163 
00164 /*     IPIV    (input) INTEGER array, dimension (N) */
00165 /*     The pivot indices from DGETRF; for 1<=i<=N, row i of the */
00166 /*     matrix was interchanged with row IPIV(i). */
00167 
00168 /*     R       (input or output) DOUBLE PRECISION array, dimension (N) */
00169 /*     The row scale factors for A.  If EQUED = 'R' or 'B', A is */
00170 /*     multiplied on the left by diag(R); if EQUED = 'N' or 'C', R */
00171 /*     is not accessed.  R is an input argument if FACT = 'F'; */
00172 /*     otherwise, R is an output argument.  If FACT = 'F' and */
00173 /*     EQUED = 'R' or 'B', each element of R must be positive. */
00174 /*     If R is output, each element of R is a power of the radix. */
00175 /*     If R is input, each element of R should be a power of the radix */
00176 /*     to ensure a reliable solution and error estimates. Scaling by */
00177 /*     powers of the radix does not cause rounding errors unless the */
00178 /*     result underflows or overflows. Rounding errors during scaling */
00179 /*     lead to refining with a matrix that is not equivalent to the */
00180 /*     input matrix, producing error estimates that may not be */
00181 /*     reliable. */
00182 
00183 /*     C       (input or output) DOUBLE PRECISION array, dimension (N) */
00184 /*     The column scale factors for A.  If EQUED = 'C' or 'B', A is */
00185 /*     multiplied on the right by diag(C); if EQUED = 'N' or 'R', C */
00186 /*     is not accessed.  C is an input argument if FACT = 'F'; */
00187 /*     otherwise, C is an output argument.  If FACT = 'F' and */
00188 /*     EQUED = 'C' or 'B', each element of C must be positive. */
00189 /*     If C is output, each element of C is a power of the radix. */
00190 /*     If C is input, each element of C should be a power of the radix */
00191 /*     to ensure a reliable solution and error estimates. Scaling by */
00192 /*     powers of the radix does not cause rounding errors unless the */
00193 /*     result underflows or overflows. Rounding errors during scaling */
00194 /*     lead to refining with a matrix that is not equivalent to the */
00195 /*     input matrix, producing error estimates that may not be */
00196 /*     reliable. */
00197 
00198 /*     B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */
00199 /*     The right hand side matrix B. */
00200 
00201 /*     LDB     (input) INTEGER */
00202 /*     The leading dimension of the array B.  LDB >= max(1,N). */
00203 
00204 /*     X       (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS) */
00205 /*     On entry, the solution matrix X, as computed by DGETRS. */
00206 /*     On exit, the improved solution matrix X. */
00207 
00208 /*     LDX     (input) INTEGER */
00209 /*     The leading dimension of the array X.  LDX >= max(1,N). */
00210 
00211 /*     RCOND   (output) DOUBLE PRECISION */
00212 /*     Reciprocal scaled condition number.  This is an estimate of the */
00213 /*     reciprocal Skeel condition number of the matrix A after */
00214 /*     equilibration (if done).  If this is less than the machine */
00215 /*     precision (in particular, if it is zero), the matrix is singular */
00216 /*     to working precision.  Note that the error may still be small even */
00217 /*     if this number is very small and the matrix appears ill- */
00218 /*     conditioned. */
00219 
00220 /*     BERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
00221 /*     Componentwise relative backward error.  This is the */
00222 /*     componentwise relative backward error of each solution vector X(j) */
00223 /*     (i.e., the smallest relative change in any element of A or B that */
00224 /*     makes X(j) an exact solution). */
00225 
00226 /*     N_ERR_BNDS (input) INTEGER */
00227 /*     Number of error bounds to return for each right hand side */
00228 /*     and each type (normwise or componentwise).  See ERR_BNDS_NORM and */
00229 /*     ERR_BNDS_COMP below. */
00230 
00231 /*     ERR_BNDS_NORM  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */
00232 /*     For each right-hand side, this array contains information about */
00233 /*     various error bounds and condition numbers corresponding to the */
00234 /*     normwise relative error, which is defined as follows: */
00235 
00236 /*     Normwise relative error in the ith solution vector: */
00237 /*             max_j (abs(XTRUE(j,i) - X(j,i))) */
00238 /*            ------------------------------ */
00239 /*                  max_j abs(X(j,i)) */
00240 
00241 /*     The array is indexed by the type of error information as described */
00242 /*     below. There currently are up to three pieces of information */
00243 /*     returned. */
00244 
00245 /*     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith */
00246 /*     right-hand side. */
00247 
00248 /*     The second index in ERR_BNDS_NORM(:,err) contains the following */
00249 /*     three fields: */
00250 /*     err = 1 "Trust/don't trust" boolean. Trust the answer if the */
00251 /*              reciprocal condition number is less than the threshold */
00252 /*              sqrt(n) * dlamch('Epsilon'). */
00253 
00254 /*     err = 2 "Guaranteed" error bound: The estimated forward error, */
00255 /*              almost certainly within a factor of 10 of the true error */
00256 /*              so long as the next entry is greater than the threshold */
00257 /*              sqrt(n) * dlamch('Epsilon'). This error bound should only */
00258 /*              be trusted if the previous boolean is true. */
00259 
00260 /*     err = 3  Reciprocal condition number: Estimated normwise */
00261 /*              reciprocal condition number.  Compared with the threshold */
00262 /*              sqrt(n) * dlamch('Epsilon') to determine if the error */
00263 /*              estimate is "guaranteed". These reciprocal condition */
00264 /*              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
00265 /*              appropriately scaled matrix Z. */
00266 /*              Let Z = S*A, where S scales each row by a power of the */
00267 /*              radix so all absolute row sums of Z are approximately 1. */
00268 
00269 /*     See Lapack Working Note 165 for further details and extra */
00270 /*     cautions. */
00271 
00272 /*     ERR_BNDS_COMP  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */
00273 /*     For each right-hand side, this array contains information about */
00274 /*     various error bounds and condition numbers corresponding to the */
00275 /*     componentwise relative error, which is defined as follows: */
00276 
00277 /*     Componentwise relative error in the ith solution vector: */
00278 /*                    abs(XTRUE(j,i) - X(j,i)) */
00279 /*             max_j ---------------------- */
00280 /*                         abs(X(j,i)) */
00281 
00282 /*     The array is indexed by the right-hand side i (on which the */
00283 /*     componentwise relative error depends), and the type of error */
00284 /*     information as described below. There currently are up to three */
00285 /*     pieces of information returned for each right-hand side. If */
00286 /*     componentwise accuracy is not requested (PARAMS(3) = 0.0), then */
00287 /*     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most */
00288 /*     the first (:,N_ERR_BNDS) entries are returned. */
00289 
00290 /*     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith */
00291 /*     right-hand side. */
00292 
00293 /*     The second index in ERR_BNDS_COMP(:,err) contains the following */
00294 /*     three fields: */
00295 /*     err = 1 "Trust/don't trust" boolean. Trust the answer if the */
00296 /*              reciprocal condition number is less than the threshold */
00297 /*              sqrt(n) * dlamch('Epsilon'). */
00298 
00299 /*     err = 2 "Guaranteed" error bound: The estimated forward error, */
00300 /*              almost certainly within a factor of 10 of the true error */
00301 /*              so long as the next entry is greater than the threshold */
00302 /*              sqrt(n) * dlamch('Epsilon'). This error bound should only */
00303 /*              be trusted if the previous boolean is true. */
00304 
00305 /*     err = 3  Reciprocal condition number: Estimated componentwise */
00306 /*              reciprocal condition number.  Compared with the threshold */
00307 /*              sqrt(n) * dlamch('Epsilon') to determine if the error */
00308 /*              estimate is "guaranteed". These reciprocal condition */
00309 /*              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
00310 /*              appropriately scaled matrix Z. */
00311 /*              Let Z = S*(A*diag(x)), where x is the solution for the */
00312 /*              current right-hand side and S scales each row of */
00313 /*              A*diag(x) by a power of the radix so all absolute row */
00314 /*              sums of Z are approximately 1. */
00315 
00316 /*     See Lapack Working Note 165 for further details and extra */
00317 /*     cautions. */
00318 
00319 /*     NPARAMS (input) INTEGER */
00320 /*     Specifies the number of parameters set in PARAMS.  If .LE. 0, the */
00321 /*     PARAMS array is never referenced and default values are used. */
00322 
00323 /*     PARAMS  (input / output) DOUBLE PRECISION array, dimension NPARAMS */
00324 /*     Specifies algorithm parameters.  If an entry is .LT. 0.0, then */
00325 /*     that entry will be filled with default value used for that */
00326 /*     parameter.  Only positions up to NPARAMS are accessed; defaults */
00327 /*     are used for higher-numbered parameters. */
00328 
00329 /*       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative */
00330 /*            refinement or not. */
00331 /*         Default: 1.0D+0 */
00332 /*            = 0.0 : No refinement is performed, and no error bounds are */
00333 /*                    computed. */
00334 /*            = 1.0 : Use the double-precision refinement algorithm, */
00335 /*                    possibly with doubled-single computations if the */
00336 /*                    compilation environment does not support DOUBLE */
00337 /*                    PRECISION. */
00338 /*              (other values are reserved for future use) */
00339 
00340 /*       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual */
00341 /*            computations allowed for refinement. */
00342 /*         Default: 10 */
00343 /*         Aggressive: Set to 100 to permit convergence using approximate */
00344 /*                     factorizations or factorizations other than LU. If */
00345 /*                     the factorization uses a technique other than */
00346 /*                     Gaussian elimination, the guarantees in */
00347 /*                     err_bnds_norm and err_bnds_comp may no longer be */
00348 /*                     trustworthy. */
00349 
00350 /*       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code */
00351 /*            will attempt to find a solution with small componentwise */
00352 /*            relative error in the double-precision algorithm.  Positive */
00353 /*            is true, 0.0 is false. */
00354 /*         Default: 1.0 (attempt componentwise convergence) */
00355 
00356 /*     WORK    (workspace) DOUBLE PRECISION array, dimension (4*N) */
00357 
00358 /*     IWORK   (workspace) INTEGER array, dimension (N) */
00359 
00360 /*     INFO    (output) INTEGER */
00361 /*       = 0:  Successful exit. The solution to every right-hand side is */
00362 /*         guaranteed. */
00363 /*       < 0:  If INFO = -i, the i-th argument had an illegal value */
00364 /*       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization */
00365 /*         has been completed, but the factor U is exactly singular, so */
00366 /*         the solution and error bounds could not be computed. RCOND = 0 */
00367 /*         is returned. */
00368 /*       = N+J: The solution corresponding to the Jth right-hand side is */
00369 /*         not guaranteed. The solutions corresponding to other right- */
00370 /*         hand sides K with K > J may not be guaranteed as well, but */
00371 /*         only the first such right-hand side is reported. If a small */
00372 /*         componentwise error is not requested (PARAMS(3) = 0.0) then */
00373 /*         the Jth right-hand side is the first with a normwise error */
00374 /*         bound that is not guaranteed (the smallest J such */
00375 /*         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) */
00376 /*         the Jth right-hand side is the first with either a normwise or */
00377 /*         componentwise error bound that is not guaranteed (the smallest */
00378 /*         J such that either ERR_BNDS_NORM(J,1) = 0.0 or */
00379 /*         ERR_BNDS_COMP(J,1) = 0.0). See the definition of */
00380 /*         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information */
00381 /*         about all of the right-hand sides check ERR_BNDS_NORM or */
00382 /*         ERR_BNDS_COMP. */
00383 
00384 /*     ================================================================== */
00385 
00386 /*     .. Parameters .. */
00387 /*     .. */
00388 /*     .. Local Scalars .. */
00389 /*     .. */
00390 /*     .. External Subroutines .. */
00391 /*     .. */
00392 /*     .. Intrinsic Functions .. */
00393 /*     .. */
00394 /*     .. External Functions .. */
00395 /*     .. */
00396 /*     .. Executable Statements .. */
00397 
00398 /*     Check the input parameters. */
00399 
00400     /* Parameter adjustments */
00401     err_bnds_comp_dim1 = *nrhs;
00402     err_bnds_comp_offset = 1 + err_bnds_comp_dim1;
00403     err_bnds_comp__ -= err_bnds_comp_offset;
00404     err_bnds_norm_dim1 = *nrhs;
00405     err_bnds_norm_offset = 1 + err_bnds_norm_dim1;
00406     err_bnds_norm__ -= err_bnds_norm_offset;
00407     ab_dim1 = *ldab;
00408     ab_offset = 1 + ab_dim1;
00409     ab -= ab_offset;
00410     afb_dim1 = *ldafb;
00411     afb_offset = 1 + afb_dim1;
00412     afb -= afb_offset;
00413     --ipiv;
00414     --r__;
00415     --c__;
00416     b_dim1 = *ldb;
00417     b_offset = 1 + b_dim1;
00418     b -= b_offset;
00419     x_dim1 = *ldx;
00420     x_offset = 1 + x_dim1;
00421     x -= x_offset;
00422     --berr;
00423     --params;
00424     --work;
00425     --iwork;
00426 
00427     /* Function Body */
00428     *info = 0;
00429     trans_type__ = ilatrans_(trans);
00430     ref_type__ = 1;
00431     if (*nparams >= 1) {
00432         if (params[1] < 0.) {
00433             params[1] = 1.;
00434         } else {
00435             ref_type__ = (integer) params[1];
00436         }
00437     }
00438 
00439 /*     Set default parameters. */
00440 
00441     illrcond_thresh__ = (doublereal) (*n) * dlamch_("Epsilon");
00442     ithresh = 10;
00443     rthresh = .5;
00444     unstable_thresh__ = .25;
00445     ignore_cwise__ = FALSE_;
00446 
00447     if (*nparams >= 2) {
00448         if (params[2] < 0.) {
00449             params[2] = (doublereal) ithresh;
00450         } else {
00451             ithresh = (integer) params[2];
00452         }
00453     }
00454     if (*nparams >= 3) {
00455         if (params[3] < 0.) {
00456             if (ignore_cwise__) {
00457                 params[3] = 0.;
00458             } else {
00459                 params[3] = 1.;
00460             }
00461         } else {
00462             ignore_cwise__ = params[3] == 0.;
00463         }
00464     }
00465     if (ref_type__ == 0 || *n_err_bnds__ == 0) {
00466         n_norms__ = 0;
00467     } else if (ignore_cwise__) {
00468         n_norms__ = 1;
00469     } else {
00470         n_norms__ = 2;
00471     }
00472 
00473     notran = lsame_(trans, "N");
00474     rowequ = lsame_(equed, "R") || lsame_(equed, "B");
00475     colequ = lsame_(equed, "C") || lsame_(equed, "B");
00476 
00477 /*     Test input parameters. */
00478 
00479     if (trans_type__ == -1) {
00480         *info = -1;
00481     } else if (! rowequ && ! colequ && ! lsame_(equed, "N")) {
00482         *info = -2;
00483     } else if (*n < 0) {
00484         *info = -3;
00485     } else if (*kl < 0) {
00486         *info = -4;
00487     } else if (*ku < 0) {
00488         *info = -5;
00489     } else if (*nrhs < 0) {
00490         *info = -6;
00491     } else if (*ldab < *kl + *ku + 1) {
00492         *info = -8;
00493     } else if (*ldafb < (*kl << 1) + *ku + 1) {
00494         *info = -10;
00495     } else if (*ldb < max(1,*n)) {
00496         *info = -13;
00497     } else if (*ldx < max(1,*n)) {
00498         *info = -15;
00499     }
00500     if (*info != 0) {
00501         i__1 = -(*info);
00502         xerbla_("DGBRFSX", &i__1);
00503         return 0;
00504     }
00505 
00506 /*     Quick return if possible. */
00507 
00508     if (*n == 0 || *nrhs == 0) {
00509         *rcond = 1.;
00510         i__1 = *nrhs;
00511         for (j = 1; j <= i__1; ++j) {
00512             berr[j] = 0.;
00513             if (*n_err_bnds__ >= 1) {
00514                 err_bnds_norm__[j + err_bnds_norm_dim1] = 1.;
00515                 err_bnds_comp__[j + err_bnds_comp_dim1] = 1.;
00516             } else if (*n_err_bnds__ >= 2) {
00517                 err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 0.;
00518                 err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 0.;
00519             } else if (*n_err_bnds__ >= 3) {
00520                 err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = 1.;
00521                 err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = 1.;
00522             }
00523         }
00524         return 0;
00525     }
00526 
00527 /*     Default to failure. */
00528 
00529     *rcond = 0.;
00530     i__1 = *nrhs;
00531     for (j = 1; j <= i__1; ++j) {
00532         berr[j] = 1.;
00533         if (*n_err_bnds__ >= 1) {
00534             err_bnds_norm__[j + err_bnds_norm_dim1] = 1.;
00535             err_bnds_comp__[j + err_bnds_comp_dim1] = 1.;
00536         } else if (*n_err_bnds__ >= 2) {
00537             err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.;
00538             err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.;
00539         } else if (*n_err_bnds__ >= 3) {
00540             err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = 0.;
00541             err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = 0.;
00542         }
00543     }
00544 
00545 /*     Compute the norm of A and the reciprocal of the condition */
00546 /*     number of A. */
00547 
00548     if (notran) {
00549         *(unsigned char *)norm = 'I';
00550     } else {
00551         *(unsigned char *)norm = '1';
00552     }
00553     anorm = dlangb_(norm, n, kl, ku, &ab[ab_offset], ldab, &work[1]);
00554     dgbcon_(norm, n, kl, ku, &afb[afb_offset], ldafb, &ipiv[1], &anorm, rcond, 
00555              &work[1], &iwork[1], info);
00556 
00557 /*     Perform refinement on each right-hand side */
00558 
00559     if (ref_type__ != 0) {
00560         prec_type__ = ilaprec_("E");
00561         if (notran) {
00562             dla_gbrfsx_extended__(&prec_type__, &trans_type__, n, kl, ku, 
00563                     nrhs, &ab[ab_offset], ldab, &afb[afb_offset], ldafb, &
00564                     ipiv[1], &colequ, &c__[1], &b[b_offset], ldb, &x[x_offset]
00565                     , ldx, &berr[1], &n_norms__, &err_bnds_norm__[
00566                     err_bnds_norm_offset], &err_bnds_comp__[
00567                     err_bnds_comp_offset], &work[*n + 1], &work[1], &work[(*n 
00568                     << 1) + 1], &work[1], rcond, &ithresh, &rthresh, &
00569                     unstable_thresh__, &ignore_cwise__, info);
00570         } else {
00571             dla_gbrfsx_extended__(&prec_type__, &trans_type__, n, kl, ku, 
00572                     nrhs, &ab[ab_offset], ldab, &afb[afb_offset], ldafb, &
00573                     ipiv[1], &rowequ, &r__[1], &b[b_offset], ldb, &x[x_offset]
00574                     , ldx, &berr[1], &n_norms__, &err_bnds_norm__[
00575                     err_bnds_norm_offset], &err_bnds_comp__[
00576                     err_bnds_comp_offset], &work[*n + 1], &work[1], &work[(*n 
00577                     << 1) + 1], &work[1], rcond, &ithresh, &rthresh, &
00578                     unstable_thresh__, &ignore_cwise__, info);
00579         }
00580     }
00581 /* Computing MAX */
00582     d__1 = 10., d__2 = sqrt((doublereal) (*n));
00583     err_lbnd__ = max(d__1,d__2) * dlamch_("Epsilon");
00584     if (*n_err_bnds__ >= 1 && n_norms__ >= 1) {
00585 
00586 /*     Compute scaled normwise condition number cond(A*C). */
00587 
00588         if (colequ && notran) {
00589             rcond_tmp__ = dla_gbrcond__(trans, n, kl, ku, &ab[ab_offset], 
00590                     ldab, &afb[afb_offset], ldafb, &ipiv[1], &c_n1, &c__[1], 
00591                     info, &work[1], &iwork[1], (ftnlen)1);
00592         } else if (rowequ && ! notran) {
00593             rcond_tmp__ = dla_gbrcond__(trans, n, kl, ku, &ab[ab_offset], 
00594                     ldab, &afb[afb_offset], ldafb, &ipiv[1], &c_n1, &r__[1], 
00595                     info, &work[1], &iwork[1], (ftnlen)1);
00596         } else {
00597             rcond_tmp__ = dla_gbrcond__(trans, n, kl, ku, &ab[ab_offset], 
00598                     ldab, &afb[afb_offset], ldafb, &ipiv[1], &c__0, &r__[1], 
00599                     info, &work[1], &iwork[1], (ftnlen)1);
00600         }
00601         i__1 = *nrhs;
00602         for (j = 1; j <= i__1; ++j) {
00603 
00604 /*     Cap the error at 1.0. */
00605 
00606             if (*n_err_bnds__ >= 2 && err_bnds_norm__[j + (err_bnds_norm_dim1 
00607                     << 1)] > 1.) {
00608                 err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.;
00609             }
00610 
00611 /*     Threshold the error (see LAWN). */
00612 
00613             if (rcond_tmp__ < illrcond_thresh__) {
00614                 err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.;
00615                 err_bnds_norm__[j + err_bnds_norm_dim1] = 0.;
00616                 if (*info <= *n) {
00617                     *info = *n + j;
00618                 }
00619             } else if (err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] < 
00620                     err_lbnd__) {
00621                 err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = err_lbnd__;
00622                 err_bnds_norm__[j + err_bnds_norm_dim1] = 1.;
00623             }
00624 
00625 /*     Save the condition number. */
00626 
00627             if (*n_err_bnds__ >= 3) {
00628                 err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = rcond_tmp__;
00629             }
00630         }
00631     }
00632     if (*n_err_bnds__ >= 1 && n_norms__ >= 2) {
00633 
00634 /*     Compute componentwise condition number cond(A*diag(Y(:,J))) for */
00635 /*     each right-hand side using the current solution as an estimate of */
00636 /*     the true solution.  If the componentwise error estimate is too */
00637 /*     large, then the solution is a lousy estimate of truth and the */
00638 /*     estimated RCOND may be too optimistic.  To avoid misleading users, */
00639 /*     the inverse condition number is set to 0.0 when the estimated */
00640 /*     cwise error is at least CWISE_WRONG. */
00641 
00642         cwise_wrong__ = sqrt(dlamch_("Epsilon"));
00643         i__1 = *nrhs;
00644         for (j = 1; j <= i__1; ++j) {
00645             if (err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] < 
00646                     cwise_wrong__) {
00647                 rcond_tmp__ = dla_gbrcond__(trans, n, kl, ku, &ab[ab_offset], 
00648                         ldab, &afb[afb_offset], ldafb, &ipiv[1], &c__1, &x[j *
00649                          x_dim1 + 1], info, &work[1], &iwork[1], (ftnlen)1);
00650             } else {
00651                 rcond_tmp__ = 0.;
00652             }
00653 
00654 /*     Cap the error at 1.0. */
00655 
00656             if (*n_err_bnds__ >= 2 && err_bnds_comp__[j + (err_bnds_comp_dim1 
00657                     << 1)] > 1.) {
00658                 err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.;
00659             }
00660 
00661 /*     Threshold the error (see LAWN). */
00662 
00663             if (rcond_tmp__ < illrcond_thresh__) {
00664                 err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.;
00665                 err_bnds_comp__[j + err_bnds_comp_dim1] = 0.;
00666                 if (params[3] == 1. && *info < *n + j) {
00667                     *info = *n + j;
00668                 }
00669             } else if (err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] < 
00670                     err_lbnd__) {
00671                 err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = err_lbnd__;
00672                 err_bnds_comp__[j + err_bnds_comp_dim1] = 1.;
00673             }
00674 
00675 /*     Save the condition number. */
00676 
00677             if (*n_err_bnds__ >= 3) {
00678                 err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = rcond_tmp__;
00679             }
00680         }
00681     }
00682 
00683     return 0;
00684 
00685 /*     End of DGBRFSX */
00686 
00687 } /* dgbrfsx_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:43