dgbmv.c
Go to the documentation of this file.
00001 /* dgbmv.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Subroutine */ int dgbmv_(char *trans, integer *m, integer *n, integer *kl, 
00017         integer *ku, doublereal *alpha, doublereal *a, integer *lda, 
00018         doublereal *x, integer *incx, doublereal *beta, doublereal *y, 
00019         integer *incy)
00020 {
00021     /* System generated locals */
00022     integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6;
00023 
00024     /* Local variables */
00025     integer i__, j, k, ix, iy, jx, jy, kx, ky, kup1, info;
00026     doublereal temp;
00027     integer lenx, leny;
00028     extern logical lsame_(char *, char *);
00029     extern /* Subroutine */ int xerbla_(char *, integer *);
00030 
00031 /*     .. Scalar Arguments .. */
00032 /*     .. */
00033 /*     .. Array Arguments .. */
00034 /*     .. */
00035 
00036 /*  Purpose */
00037 /*  ======= */
00038 
00039 /*  DGBMV  performs one of the matrix-vector operations */
00040 
00041 /*     y := alpha*A*x + beta*y,   or   y := alpha*A'*x + beta*y, */
00042 
00043 /*  where alpha and beta are scalars, x and y are vectors and A is an */
00044 /*  m by n band matrix, with kl sub-diagonals and ku super-diagonals. */
00045 
00046 /*  Arguments */
00047 /*  ========== */
00048 
00049 /*  TRANS  - CHARACTER*1. */
00050 /*           On entry, TRANS specifies the operation to be performed as */
00051 /*           follows: */
00052 
00053 /*              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y. */
00054 
00055 /*              TRANS = 'T' or 't'   y := alpha*A'*x + beta*y. */
00056 
00057 /*              TRANS = 'C' or 'c'   y := alpha*A'*x + beta*y. */
00058 
00059 /*           Unchanged on exit. */
00060 
00061 /*  M      - INTEGER. */
00062 /*           On entry, M specifies the number of rows of the matrix A. */
00063 /*           M must be at least zero. */
00064 /*           Unchanged on exit. */
00065 
00066 /*  N      - INTEGER. */
00067 /*           On entry, N specifies the number of columns of the matrix A. */
00068 /*           N must be at least zero. */
00069 /*           Unchanged on exit. */
00070 
00071 /*  KL     - INTEGER. */
00072 /*           On entry, KL specifies the number of sub-diagonals of the */
00073 /*           matrix A. KL must satisfy  0 .le. KL. */
00074 /*           Unchanged on exit. */
00075 
00076 /*  KU     - INTEGER. */
00077 /*           On entry, KU specifies the number of super-diagonals of the */
00078 /*           matrix A. KU must satisfy  0 .le. KU. */
00079 /*           Unchanged on exit. */
00080 
00081 /*  ALPHA  - DOUBLE PRECISION. */
00082 /*           On entry, ALPHA specifies the scalar alpha. */
00083 /*           Unchanged on exit. */
00084 
00085 /*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ). */
00086 /*           Before entry, the leading ( kl + ku + 1 ) by n part of the */
00087 /*           array A must contain the matrix of coefficients, supplied */
00088 /*           column by column, with the leading diagonal of the matrix in */
00089 /*           row ( ku + 1 ) of the array, the first super-diagonal */
00090 /*           starting at position 2 in row ku, the first sub-diagonal */
00091 /*           starting at position 1 in row ( ku + 2 ), and so on. */
00092 /*           Elements in the array A that do not correspond to elements */
00093 /*           in the band matrix (such as the top left ku by ku triangle) */
00094 /*           are not referenced. */
00095 /*           The following program segment will transfer a band matrix */
00096 /*           from conventional full matrix storage to band storage: */
00097 
00098 /*                 DO 20, J = 1, N */
00099 /*                    K = KU + 1 - J */
00100 /*                    DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL ) */
00101 /*                       A( K + I, J ) = matrix( I, J ) */
00102 /*              10    CONTINUE */
00103 /*              20 CONTINUE */
00104 
00105 /*           Unchanged on exit. */
00106 
00107 /*  LDA    - INTEGER. */
00108 /*           On entry, LDA specifies the first dimension of A as declared */
00109 /*           in the calling (sub) program. LDA must be at least */
00110 /*           ( kl + ku + 1 ). */
00111 /*           Unchanged on exit. */
00112 
00113 /*  X      - DOUBLE PRECISION array of DIMENSION at least */
00114 /*           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' */
00115 /*           and at least */
00116 /*           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. */
00117 /*           Before entry, the incremented array X must contain the */
00118 /*           vector x. */
00119 /*           Unchanged on exit. */
00120 
00121 /*  INCX   - INTEGER. */
00122 /*           On entry, INCX specifies the increment for the elements of */
00123 /*           X. INCX must not be zero. */
00124 /*           Unchanged on exit. */
00125 
00126 /*  BETA   - DOUBLE PRECISION. */
00127 /*           On entry, BETA specifies the scalar beta. When BETA is */
00128 /*           supplied as zero then Y need not be set on input. */
00129 /*           Unchanged on exit. */
00130 
00131 /*  Y      - DOUBLE PRECISION array of DIMENSION at least */
00132 /*           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' */
00133 /*           and at least */
00134 /*           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. */
00135 /*           Before entry, the incremented array Y must contain the */
00136 /*           vector y. On exit, Y is overwritten by the updated vector y. */
00137 
00138 /*  INCY   - INTEGER. */
00139 /*           On entry, INCY specifies the increment for the elements of */
00140 /*           Y. INCY must not be zero. */
00141 /*           Unchanged on exit. */
00142 
00143 
00144 /*  Level 2 Blas routine. */
00145 
00146 /*  -- Written on 22-October-1986. */
00147 /*     Jack Dongarra, Argonne National Lab. */
00148 /*     Jeremy Du Croz, Nag Central Office. */
00149 /*     Sven Hammarling, Nag Central Office. */
00150 /*     Richard Hanson, Sandia National Labs. */
00151 
00152 /*     .. Parameters .. */
00153 /*     .. */
00154 /*     .. Local Scalars .. */
00155 /*     .. */
00156 /*     .. External Functions .. */
00157 /*     .. */
00158 /*     .. External Subroutines .. */
00159 /*     .. */
00160 /*     .. Intrinsic Functions .. */
00161 /*     .. */
00162 
00163 /*     Test the input parameters. */
00164 
00165     /* Parameter adjustments */
00166     a_dim1 = *lda;
00167     a_offset = 1 + a_dim1;
00168     a -= a_offset;
00169     --x;
00170     --y;
00171 
00172     /* Function Body */
00173     info = 0;
00174     if (! lsame_(trans, "N") && ! lsame_(trans, "T") && ! lsame_(trans, "C")
00175             ) {
00176         info = 1;
00177     } else if (*m < 0) {
00178         info = 2;
00179     } else if (*n < 0) {
00180         info = 3;
00181     } else if (*kl < 0) {
00182         info = 4;
00183     } else if (*ku < 0) {
00184         info = 5;
00185     } else if (*lda < *kl + *ku + 1) {
00186         info = 8;
00187     } else if (*incx == 0) {
00188         info = 10;
00189     } else if (*incy == 0) {
00190         info = 13;
00191     }
00192     if (info != 0) {
00193         xerbla_("DGBMV ", &info);
00194         return 0;
00195     }
00196 
00197 /*     Quick return if possible. */
00198 
00199     if (*m == 0 || *n == 0 || *alpha == 0. && *beta == 1.) {
00200         return 0;
00201     }
00202 
00203 /*     Set  LENX  and  LENY, the lengths of the vectors x and y, and set */
00204 /*     up the start points in  X  and  Y. */
00205 
00206     if (lsame_(trans, "N")) {
00207         lenx = *n;
00208         leny = *m;
00209     } else {
00210         lenx = *m;
00211         leny = *n;
00212     }
00213     if (*incx > 0) {
00214         kx = 1;
00215     } else {
00216         kx = 1 - (lenx - 1) * *incx;
00217     }
00218     if (*incy > 0) {
00219         ky = 1;
00220     } else {
00221         ky = 1 - (leny - 1) * *incy;
00222     }
00223 
00224 /*     Start the operations. In this version the elements of A are */
00225 /*     accessed sequentially with one pass through the band part of A. */
00226 
00227 /*     First form  y := beta*y. */
00228 
00229     if (*beta != 1.) {
00230         if (*incy == 1) {
00231             if (*beta == 0.) {
00232                 i__1 = leny;
00233                 for (i__ = 1; i__ <= i__1; ++i__) {
00234                     y[i__] = 0.;
00235 /* L10: */
00236                 }
00237             } else {
00238                 i__1 = leny;
00239                 for (i__ = 1; i__ <= i__1; ++i__) {
00240                     y[i__] = *beta * y[i__];
00241 /* L20: */
00242                 }
00243             }
00244         } else {
00245             iy = ky;
00246             if (*beta == 0.) {
00247                 i__1 = leny;
00248                 for (i__ = 1; i__ <= i__1; ++i__) {
00249                     y[iy] = 0.;
00250                     iy += *incy;
00251 /* L30: */
00252                 }
00253             } else {
00254                 i__1 = leny;
00255                 for (i__ = 1; i__ <= i__1; ++i__) {
00256                     y[iy] = *beta * y[iy];
00257                     iy += *incy;
00258 /* L40: */
00259                 }
00260             }
00261         }
00262     }
00263     if (*alpha == 0.) {
00264         return 0;
00265     }
00266     kup1 = *ku + 1;
00267     if (lsame_(trans, "N")) {
00268 
00269 /*        Form  y := alpha*A*x + y. */
00270 
00271         jx = kx;
00272         if (*incy == 1) {
00273             i__1 = *n;
00274             for (j = 1; j <= i__1; ++j) {
00275                 if (x[jx] != 0.) {
00276                     temp = *alpha * x[jx];
00277                     k = kup1 - j;
00278 /* Computing MAX */
00279                     i__2 = 1, i__3 = j - *ku;
00280 /* Computing MIN */
00281                     i__5 = *m, i__6 = j + *kl;
00282                     i__4 = min(i__5,i__6);
00283                     for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
00284                         y[i__] += temp * a[k + i__ + j * a_dim1];
00285 /* L50: */
00286                     }
00287                 }
00288                 jx += *incx;
00289 /* L60: */
00290             }
00291         } else {
00292             i__1 = *n;
00293             for (j = 1; j <= i__1; ++j) {
00294                 if (x[jx] != 0.) {
00295                     temp = *alpha * x[jx];
00296                     iy = ky;
00297                     k = kup1 - j;
00298 /* Computing MAX */
00299                     i__4 = 1, i__2 = j - *ku;
00300 /* Computing MIN */
00301                     i__5 = *m, i__6 = j + *kl;
00302                     i__3 = min(i__5,i__6);
00303                     for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
00304                         y[iy] += temp * a[k + i__ + j * a_dim1];
00305                         iy += *incy;
00306 /* L70: */
00307                     }
00308                 }
00309                 jx += *incx;
00310                 if (j > *ku) {
00311                     ky += *incy;
00312                 }
00313 /* L80: */
00314             }
00315         }
00316     } else {
00317 
00318 /*        Form  y := alpha*A'*x + y. */
00319 
00320         jy = ky;
00321         if (*incx == 1) {
00322             i__1 = *n;
00323             for (j = 1; j <= i__1; ++j) {
00324                 temp = 0.;
00325                 k = kup1 - j;
00326 /* Computing MAX */
00327                 i__3 = 1, i__4 = j - *ku;
00328 /* Computing MIN */
00329                 i__5 = *m, i__6 = j + *kl;
00330                 i__2 = min(i__5,i__6);
00331                 for (i__ = max(i__3,i__4); i__ <= i__2; ++i__) {
00332                     temp += a[k + i__ + j * a_dim1] * x[i__];
00333 /* L90: */
00334                 }
00335                 y[jy] += *alpha * temp;
00336                 jy += *incy;
00337 /* L100: */
00338             }
00339         } else {
00340             i__1 = *n;
00341             for (j = 1; j <= i__1; ++j) {
00342                 temp = 0.;
00343                 ix = kx;
00344                 k = kup1 - j;
00345 /* Computing MAX */
00346                 i__2 = 1, i__3 = j - *ku;
00347 /* Computing MIN */
00348                 i__5 = *m, i__6 = j + *kl;
00349                 i__4 = min(i__5,i__6);
00350                 for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
00351                     temp += a[k + i__ + j * a_dim1] * x[ix];
00352                     ix += *incx;
00353 /* L110: */
00354                 }
00355                 y[jy] += *alpha * temp;
00356                 jy += *incy;
00357                 if (j > *ku) {
00358                     kx += *incx;
00359                 }
00360 /* L120: */
00361             }
00362         }
00363     }
00364 
00365     return 0;
00366 
00367 /*     End of DGBMV . */
00368 
00369 } /* dgbmv_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:43