ddrvpt.c
Go to the documentation of this file.
00001 /* ddrvpt.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Common Block Declarations */
00017 
00018 struct {
00019     integer infot, nunit;
00020     logical ok, lerr;
00021 } infoc_;
00022 
00023 #define infoc_1 infoc_
00024 
00025 struct {
00026     char srnamt[32];
00027 } srnamc_;
00028 
00029 #define srnamc_1 srnamc_
00030 
00031 /* Table of constant values */
00032 
00033 static integer c__2 = 2;
00034 static integer c__0 = 0;
00035 static integer c_n1 = -1;
00036 static integer c__1 = 1;
00037 static doublereal c_b23 = 1.;
00038 static doublereal c_b24 = 0.;
00039 
00040 /* Subroutine */ int ddrvpt_(logical *dotype, integer *nn, integer *nval, 
00041         integer *nrhs, doublereal *thresh, logical *tsterr, doublereal *a, 
00042         doublereal *d__, doublereal *e, doublereal *b, doublereal *x, 
00043         doublereal *xact, doublereal *work, doublereal *rwork, integer *nout)
00044 {
00045     /* Initialized data */
00046 
00047     static integer iseedy[4] = { 0,0,0,1 };
00048 
00049     /* Format strings */
00050     static char fmt_9999[] = "(1x,a,\002, N =\002,i5,\002, type \002,i2,\002"
00051             ", test \002,i2,\002, ratio = \002,g12.5)";
00052     static char fmt_9998[] = "(1x,a,\002, FACT='\002,a1,\002', N =\002,i5"
00053             ",\002, type \002,i2,\002, test \002,i2,\002, ratio = \002,g12.5)";
00054 
00055     /* System generated locals */
00056     integer i__1, i__2, i__3, i__4;
00057     doublereal d__1, d__2, d__3;
00058 
00059     /* Builtin functions */
00060     /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
00061     integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
00062 
00063     /* Local variables */
00064     integer i__, j, k, n;
00065     doublereal z__[3];
00066     integer k1, ia, in, kl, ku, ix, nt, lda;
00067     char fact[1];
00068     doublereal cond;
00069     integer mode;
00070     doublereal dmax__;
00071     integer imat, info;
00072     char path[3], dist[1], type__[1];
00073     integer nrun, ifact;
00074     extern /* Subroutine */ int dget04_(integer *, integer *, doublereal *, 
00075             integer *, doublereal *, integer *, doublereal *, doublereal *), 
00076             dscal_(integer *, doublereal *, doublereal *, integer *);
00077     integer nfail, iseed[4];
00078     extern doublereal dget06_(doublereal *, doublereal *);
00079     doublereal rcond;
00080     integer nimat;
00081     extern doublereal dasum_(integer *, doublereal *, integer *);
00082     doublereal anorm;
00083     extern /* Subroutine */ int dptt01_(integer *, doublereal *, doublereal *, 
00084              doublereal *, doublereal *, doublereal *, doublereal *), dcopy_(
00085             integer *, doublereal *, integer *, doublereal *, integer *), 
00086             dptt02_(integer *, integer *, doublereal *, doublereal *, 
00087             doublereal *, integer *, doublereal *, integer *, doublereal *), 
00088             dptt05_(integer *, integer *, doublereal *, doublereal *, 
00089             doublereal *, integer *, doublereal *, integer *, doublereal *, 
00090             integer *, doublereal *, doublereal *, doublereal *);
00091     integer izero, nerrs;
00092     extern /* Subroutine */ int dptsv_(integer *, integer *, doublereal *, 
00093             doublereal *, doublereal *, integer *, integer *);
00094     logical zerot;
00095     extern /* Subroutine */ int dlatb4_(char *, integer *, integer *, integer 
00096             *, char *, integer *, integer *, doublereal *, integer *, 
00097             doublereal *, char *), aladhd_(integer *, 
00098             char *), alaerh_(char *, char *, integer *, integer *, 
00099             char *, integer *, integer *, integer *, integer *, integer *, 
00100             integer *, integer *, integer *, integer *);
00101     extern integer idamax_(integer *, doublereal *, integer *);
00102     doublereal rcondc;
00103     extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
00104             doublereal *, integer *, doublereal *, integer *), 
00105             dlaset_(char *, integer *, integer *, doublereal *, doublereal *, 
00106             doublereal *, integer *), dlaptm_(integer *, integer *, 
00107             doublereal *, doublereal *, doublereal *, doublereal *, integer *, 
00108              doublereal *, doublereal *, integer *), alasvm_(char *, integer *
00109 , integer *, integer *, integer *), dlatms_(integer *, 
00110             integer *, char *, integer *, char *, doublereal *, integer *, 
00111             doublereal *, doublereal *, integer *, integer *, char *, 
00112             doublereal *, integer *, doublereal *, integer *);
00113     extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
00114     extern /* Subroutine */ int dlarnv_(integer *, integer *, integer *, 
00115             doublereal *);
00116     doublereal ainvnm;
00117     extern /* Subroutine */ int dpttrf_(integer *, doublereal *, doublereal *, 
00118              integer *), derrvx_(char *, integer *);
00119     doublereal result[6];
00120     extern /* Subroutine */ int dpttrs_(integer *, integer *, doublereal *, 
00121             doublereal *, doublereal *, integer *, integer *), dptsvx_(char *, 
00122              integer *, integer *, doublereal *, doublereal *, doublereal *, 
00123             doublereal *, doublereal *, integer *, doublereal *, integer *, 
00124             doublereal *, doublereal *, doublereal *, doublereal *, integer *);
00125 
00126     /* Fortran I/O blocks */
00127     static cilist io___35 = { 0, 0, 0, fmt_9999, 0 };
00128     static cilist io___38 = { 0, 0, 0, fmt_9998, 0 };
00129 
00130 
00131 
00132 /*  -- LAPACK test routine (version 3.1) -- */
00133 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00134 /*     November 2006 */
00135 
00136 /*     .. Scalar Arguments .. */
00137 /*     .. */
00138 /*     .. Array Arguments .. */
00139 /*     .. */
00140 
00141 /*  Purpose */
00142 /*  ======= */
00143 
00144 /*  DDRVPT tests DPTSV and -SVX. */
00145 
00146 /*  Arguments */
00147 /*  ========= */
00148 
00149 /*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
00150 /*          The matrix types to be used for testing.  Matrices of type j */
00151 /*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
00152 /*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */
00153 
00154 /*  NN      (input) INTEGER */
00155 /*          The number of values of N contained in the vector NVAL. */
00156 
00157 /*  NVAL    (input) INTEGER array, dimension (NN) */
00158 /*          The values of the matrix dimension N. */
00159 
00160 /*  NRHS    (input) INTEGER */
00161 /*          The number of right hand side vectors to be generated for */
00162 /*          each linear system. */
00163 
00164 /*  THRESH  (input) DOUBLE PRECISION */
00165 /*          The threshold value for the test ratios.  A result is */
00166 /*          included in the output file if RESULT >= THRESH.  To have */
00167 /*          every test ratio printed, use THRESH = 0. */
00168 
00169 /*  TSTERR  (input) LOGICAL */
00170 /*          Flag that indicates whether error exits are to be tested. */
00171 
00172 /*  A       (workspace) DOUBLE PRECISION array, dimension (NMAX*2) */
00173 
00174 /*  D       (workspace) DOUBLE PRECISION array, dimension (NMAX*2) */
00175 
00176 /*  E       (workspace) DOUBLE PRECISION array, dimension (NMAX*2) */
00177 
00178 /*  B       (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */
00179 
00180 /*  X       (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */
00181 
00182 /*  XACT    (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */
00183 
00184 /*  WORK    (workspace) DOUBLE PRECISION array, dimension */
00185 /*                      (NMAX*max(3,NRHS)) */
00186 
00187 /*  RWORK   (workspace) DOUBLE PRECISION array, dimension */
00188 /*                      (max(NMAX,2*NRHS)) */
00189 
00190 /*  NOUT    (input) INTEGER */
00191 /*          The unit number for output. */
00192 
00193 /*  ===================================================================== */
00194 
00195 /*     .. Parameters .. */
00196 /*     .. */
00197 /*     .. Local Scalars .. */
00198 /*     .. */
00199 /*     .. Local Arrays .. */
00200 /*     .. */
00201 /*     .. External Functions .. */
00202 /*     .. */
00203 /*     .. External Subroutines .. */
00204 /*     .. */
00205 /*     .. Intrinsic Functions .. */
00206 /*     .. */
00207 /*     .. Scalars in Common .. */
00208 /*     .. */
00209 /*     .. Common blocks .. */
00210 /*     .. */
00211 /*     .. Data statements .. */
00212     /* Parameter adjustments */
00213     --rwork;
00214     --work;
00215     --xact;
00216     --x;
00217     --b;
00218     --e;
00219     --d__;
00220     --a;
00221     --nval;
00222     --dotype;
00223 
00224     /* Function Body */
00225 /*     .. */
00226 /*     .. Executable Statements .. */
00227 
00228     s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16);
00229     s_copy(path + 1, "PT", (ftnlen)2, (ftnlen)2);
00230     nrun = 0;
00231     nfail = 0;
00232     nerrs = 0;
00233     for (i__ = 1; i__ <= 4; ++i__) {
00234         iseed[i__ - 1] = iseedy[i__ - 1];
00235 /* L10: */
00236     }
00237 
00238 /*     Test the error exits */
00239 
00240     if (*tsterr) {
00241         derrvx_(path, nout);
00242     }
00243     infoc_1.infot = 0;
00244 
00245     i__1 = *nn;
00246     for (in = 1; in <= i__1; ++in) {
00247 
00248 /*        Do for each value of N in NVAL. */
00249 
00250         n = nval[in];
00251         lda = max(1,n);
00252         nimat = 12;
00253         if (n <= 0) {
00254             nimat = 1;
00255         }
00256 
00257         i__2 = nimat;
00258         for (imat = 1; imat <= i__2; ++imat) {
00259 
00260 /*           Do the tests only if DOTYPE( IMAT ) is true. */
00261 
00262             if (n > 0 && ! dotype[imat]) {
00263                 goto L110;
00264             }
00265 
00266 /*           Set up parameters with DLATB4. */
00267 
00268             dlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, &
00269                     cond, dist);
00270 
00271             zerot = imat >= 8 && imat <= 10;
00272             if (imat <= 6) {
00273 
00274 /*              Type 1-6:  generate a symmetric tridiagonal matrix of */
00275 /*              known condition number in lower triangular band storage. */
00276 
00277                 s_copy(srnamc_1.srnamt, "DLATMS", (ftnlen)32, (ftnlen)6);
00278                 dlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &cond, 
00279                         &anorm, &kl, &ku, "B", &a[1], &c__2, &work[1], &info);
00280 
00281 /*              Check the error code from DLATMS. */
00282 
00283                 if (info != 0) {
00284                     alaerh_(path, "DLATMS", &info, &c__0, " ", &n, &n, &kl, &
00285                             ku, &c_n1, &imat, &nfail, &nerrs, nout);
00286                     goto L110;
00287                 }
00288                 izero = 0;
00289 
00290 /*              Copy the matrix to D and E. */
00291 
00292                 ia = 1;
00293                 i__3 = n - 1;
00294                 for (i__ = 1; i__ <= i__3; ++i__) {
00295                     d__[i__] = a[ia];
00296                     e[i__] = a[ia + 1];
00297                     ia += 2;
00298 /* L20: */
00299                 }
00300                 if (n > 0) {
00301                     d__[n] = a[ia];
00302                 }
00303             } else {
00304 
00305 /*              Type 7-12:  generate a diagonally dominant matrix with */
00306 /*              unknown condition number in the vectors D and E. */
00307 
00308                 if (! zerot || ! dotype[7]) {
00309 
00310 /*                 Let D and E have values from [-1,1]. */
00311 
00312                     dlarnv_(&c__2, iseed, &n, &d__[1]);
00313                     i__3 = n - 1;
00314                     dlarnv_(&c__2, iseed, &i__3, &e[1]);
00315 
00316 /*                 Make the tridiagonal matrix diagonally dominant. */
00317 
00318                     if (n == 1) {
00319                         d__[1] = abs(d__[1]);
00320                     } else {
00321                         d__[1] = abs(d__[1]) + abs(e[1]);
00322                         d__[n] = (d__1 = d__[n], abs(d__1)) + (d__2 = e[n - 1]
00323                                 , abs(d__2));
00324                         i__3 = n - 1;
00325                         for (i__ = 2; i__ <= i__3; ++i__) {
00326                             d__[i__] = (d__1 = d__[i__], abs(d__1)) + (d__2 = 
00327                                     e[i__], abs(d__2)) + (d__3 = e[i__ - 1], 
00328                                     abs(d__3));
00329 /* L30: */
00330                         }
00331                     }
00332 
00333 /*                 Scale D and E so the maximum element is ANORM. */
00334 
00335                     ix = idamax_(&n, &d__[1], &c__1);
00336                     dmax__ = d__[ix];
00337                     d__1 = anorm / dmax__;
00338                     dscal_(&n, &d__1, &d__[1], &c__1);
00339                     if (n > 1) {
00340                         i__3 = n - 1;
00341                         d__1 = anorm / dmax__;
00342                         dscal_(&i__3, &d__1, &e[1], &c__1);
00343                     }
00344 
00345                 } else if (izero > 0) {
00346 
00347 /*                 Reuse the last matrix by copying back the zeroed out */
00348 /*                 elements. */
00349 
00350                     if (izero == 1) {
00351                         d__[1] = z__[1];
00352                         if (n > 1) {
00353                             e[1] = z__[2];
00354                         }
00355                     } else if (izero == n) {
00356                         e[n - 1] = z__[0];
00357                         d__[n] = z__[1];
00358                     } else {
00359                         e[izero - 1] = z__[0];
00360                         d__[izero] = z__[1];
00361                         e[izero] = z__[2];
00362                     }
00363                 }
00364 
00365 /*              For types 8-10, set one row and column of the matrix to */
00366 /*              zero. */
00367 
00368                 izero = 0;
00369                 if (imat == 8) {
00370                     izero = 1;
00371                     z__[1] = d__[1];
00372                     d__[1] = 0.;
00373                     if (n > 1) {
00374                         z__[2] = e[1];
00375                         e[1] = 0.;
00376                     }
00377                 } else if (imat == 9) {
00378                     izero = n;
00379                     if (n > 1) {
00380                         z__[0] = e[n - 1];
00381                         e[n - 1] = 0.;
00382                     }
00383                     z__[1] = d__[n];
00384                     d__[n] = 0.;
00385                 } else if (imat == 10) {
00386                     izero = (n + 1) / 2;
00387                     if (izero > 1) {
00388                         z__[0] = e[izero - 1];
00389                         z__[2] = e[izero];
00390                         e[izero - 1] = 0.;
00391                         e[izero] = 0.;
00392                     }
00393                     z__[1] = d__[izero];
00394                     d__[izero] = 0.;
00395                 }
00396             }
00397 
00398 /*           Generate NRHS random solution vectors. */
00399 
00400             ix = 1;
00401             i__3 = *nrhs;
00402             for (j = 1; j <= i__3; ++j) {
00403                 dlarnv_(&c__2, iseed, &n, &xact[ix]);
00404                 ix += lda;
00405 /* L40: */
00406             }
00407 
00408 /*           Set the right hand side. */
00409 
00410             dlaptm_(&n, nrhs, &c_b23, &d__[1], &e[1], &xact[1], &lda, &c_b24, 
00411                     &b[1], &lda);
00412 
00413             for (ifact = 1; ifact <= 2; ++ifact) {
00414                 if (ifact == 1) {
00415                     *(unsigned char *)fact = 'F';
00416                 } else {
00417                     *(unsigned char *)fact = 'N';
00418                 }
00419 
00420 /*              Compute the condition number for comparison with */
00421 /*              the value returned by DPTSVX. */
00422 
00423                 if (zerot) {
00424                     if (ifact == 1) {
00425                         goto L100;
00426                     }
00427                     rcondc = 0.;
00428 
00429                 } else if (ifact == 1) {
00430 
00431 /*                 Compute the 1-norm of A. */
00432 
00433                     anorm = dlanst_("1", &n, &d__[1], &e[1]);
00434 
00435                     dcopy_(&n, &d__[1], &c__1, &d__[n + 1], &c__1);
00436                     if (n > 1) {
00437                         i__3 = n - 1;
00438                         dcopy_(&i__3, &e[1], &c__1, &e[n + 1], &c__1);
00439                     }
00440 
00441 /*                 Factor the matrix A. */
00442 
00443                     dpttrf_(&n, &d__[n + 1], &e[n + 1], &info);
00444 
00445 /*                 Use DPTTRS to solve for one column at a time of */
00446 /*                 inv(A), computing the maximum column sum as we go. */
00447 
00448                     ainvnm = 0.;
00449                     i__3 = n;
00450                     for (i__ = 1; i__ <= i__3; ++i__) {
00451                         i__4 = n;
00452                         for (j = 1; j <= i__4; ++j) {
00453                             x[j] = 0.;
00454 /* L50: */
00455                         }
00456                         x[i__] = 1.;
00457                         dpttrs_(&n, &c__1, &d__[n + 1], &e[n + 1], &x[1], &
00458                                 lda, &info);
00459 /* Computing MAX */
00460                         d__1 = ainvnm, d__2 = dasum_(&n, &x[1], &c__1);
00461                         ainvnm = max(d__1,d__2);
00462 /* L60: */
00463                     }
00464 
00465 /*                 Compute the 1-norm condition number of A. */
00466 
00467                     if (anorm <= 0. || ainvnm <= 0.) {
00468                         rcondc = 1.;
00469                     } else {
00470                         rcondc = 1. / anorm / ainvnm;
00471                     }
00472                 }
00473 
00474                 if (ifact == 2) {
00475 
00476 /*                 --- Test DPTSV -- */
00477 
00478                     dcopy_(&n, &d__[1], &c__1, &d__[n + 1], &c__1);
00479                     if (n > 1) {
00480                         i__3 = n - 1;
00481                         dcopy_(&i__3, &e[1], &c__1, &e[n + 1], &c__1);
00482                     }
00483                     dlacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &lda);
00484 
00485 /*                 Factor A as L*D*L' and solve the system A*X = B. */
00486 
00487                     s_copy(srnamc_1.srnamt, "DPTSV ", (ftnlen)32, (ftnlen)6);
00488                     dptsv_(&n, nrhs, &d__[n + 1], &e[n + 1], &x[1], &lda, &
00489                             info);
00490 
00491 /*                 Check error code from DPTSV . */
00492 
00493                     if (info != izero) {
00494                         alaerh_(path, "DPTSV ", &info, &izero, " ", &n, &n, &
00495                                 c__1, &c__1, nrhs, &imat, &nfail, &nerrs, 
00496                                 nout);
00497                     }
00498                     nt = 0;
00499                     if (izero == 0) {
00500 
00501 /*                    Check the factorization by computing the ratio */
00502 /*                       norm(L*D*L' - A) / (n * norm(A) * EPS ) */
00503 
00504                         dptt01_(&n, &d__[1], &e[1], &d__[n + 1], &e[n + 1], &
00505                                 work[1], result);
00506 
00507 /*                    Compute the residual in the solution. */
00508 
00509                         dlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
00510                         dptt02_(&n, nrhs, &d__[1], &e[1], &x[1], &lda, &work[
00511                                 1], &lda, &result[1]);
00512 
00513 /*                    Check solution from generated exact solution. */
00514 
00515                         dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
00516                                 rcondc, &result[2]);
00517                         nt = 3;
00518                     }
00519 
00520 /*                 Print information about the tests that did not pass */
00521 /*                 the threshold. */
00522 
00523                     i__3 = nt;
00524                     for (k = 1; k <= i__3; ++k) {
00525                         if (result[k - 1] >= *thresh) {
00526                             if (nfail == 0 && nerrs == 0) {
00527                                 aladhd_(nout, path);
00528                             }
00529                             io___35.ciunit = *nout;
00530                             s_wsfe(&io___35);
00531                             do_fio(&c__1, "DPTSV ", (ftnlen)6);
00532                             do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
00533                                     ;
00534                             do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
00535                                     integer));
00536                             do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
00537                                     ;
00538                             do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
00539                                     sizeof(doublereal));
00540                             e_wsfe();
00541                             ++nfail;
00542                         }
00543 /* L70: */
00544                     }
00545                     nrun += nt;
00546                 }
00547 
00548 /*              --- Test DPTSVX --- */
00549 
00550                 if (ifact > 1) {
00551 
00552 /*                 Initialize D( N+1:2*N ) and E( N+1:2*N ) to zero. */
00553 
00554                     i__3 = n - 1;
00555                     for (i__ = 1; i__ <= i__3; ++i__) {
00556                         d__[n + i__] = 0.;
00557                         e[n + i__] = 0.;
00558 /* L80: */
00559                     }
00560                     if (n > 0) {
00561                         d__[n + n] = 0.;
00562                     }
00563                 }
00564 
00565                 dlaset_("Full", &n, nrhs, &c_b24, &c_b24, &x[1], &lda);
00566 
00567 /*              Solve the system and compute the condition number and */
00568 /*              error bounds using DPTSVX. */
00569 
00570                 s_copy(srnamc_1.srnamt, "DPTSVX", (ftnlen)32, (ftnlen)6);
00571                 dptsvx_(fact, &n, nrhs, &d__[1], &e[1], &d__[n + 1], &e[n + 1]
00572 , &b[1], &lda, &x[1], &lda, &rcond, &rwork[1], &rwork[
00573                         *nrhs + 1], &work[1], &info);
00574 
00575 /*              Check the error code from DPTSVX. */
00576 
00577                 if (info != izero) {
00578                     alaerh_(path, "DPTSVX", &info, &izero, fact, &n, &n, &
00579                             c__1, &c__1, nrhs, &imat, &nfail, &nerrs, nout);
00580                 }
00581                 if (izero == 0) {
00582                     if (ifact == 2) {
00583 
00584 /*                    Check the factorization by computing the ratio */
00585 /*                       norm(L*D*L' - A) / (n * norm(A) * EPS ) */
00586 
00587                         k1 = 1;
00588                         dptt01_(&n, &d__[1], &e[1], &d__[n + 1], &e[n + 1], &
00589                                 work[1], result);
00590                     } else {
00591                         k1 = 2;
00592                     }
00593 
00594 /*                 Compute the residual in the solution. */
00595 
00596                     dlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
00597                     dptt02_(&n, nrhs, &d__[1], &e[1], &x[1], &lda, &work[1], &
00598                             lda, &result[1]);
00599 
00600 /*                 Check solution from generated exact solution. */
00601 
00602                     dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &
00603                             result[2]);
00604 
00605 /*                 Check error bounds from iterative refinement. */
00606 
00607                     dptt05_(&n, nrhs, &d__[1], &e[1], &b[1], &lda, &x[1], &
00608                             lda, &xact[1], &lda, &rwork[1], &rwork[*nrhs + 1], 
00609                              &result[3]);
00610                 } else {
00611                     k1 = 6;
00612                 }
00613 
00614 /*              Check the reciprocal of the condition number. */
00615 
00616                 result[5] = dget06_(&rcond, &rcondc);
00617 
00618 /*              Print information about the tests that did not pass */
00619 /*              the threshold. */
00620 
00621                 for (k = k1; k <= 6; ++k) {
00622                     if (result[k - 1] >= *thresh) {
00623                         if (nfail == 0 && nerrs == 0) {
00624                             aladhd_(nout, path);
00625                         }
00626                         io___38.ciunit = *nout;
00627                         s_wsfe(&io___38);
00628                         do_fio(&c__1, "DPTSVX", (ftnlen)6);
00629                         do_fio(&c__1, fact, (ftnlen)1);
00630                         do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
00631                         do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
00632                         do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer));
00633                         do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(
00634                                 doublereal));
00635                         e_wsfe();
00636                         ++nfail;
00637                     }
00638 /* L90: */
00639                 }
00640                 nrun = nrun + 7 - k1;
00641 L100:
00642                 ;
00643             }
00644 L110:
00645             ;
00646         }
00647 /* L120: */
00648     }
00649 
00650 /*     Print a summary of the results. */
00651 
00652     alasvm_(path, nout, &nfail, &nrun, &nerrs);
00653 
00654     return 0;
00655 
00656 /*     End of DDRVPT */
00657 
00658 } /* ddrvpt_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:40