00001 /* ddisna.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int ddisna_(char *job, integer *m, integer *n, doublereal * 00017 d__, doublereal *sep, integer *info) 00018 { 00019 /* System generated locals */ 00020 integer i__1; 00021 doublereal d__1, d__2, d__3; 00022 00023 /* Local variables */ 00024 integer i__, k; 00025 doublereal eps; 00026 logical decr, left, incr, sing, eigen; 00027 extern logical lsame_(char *, char *); 00028 doublereal anorm; 00029 logical right; 00030 extern doublereal dlamch_(char *); 00031 doublereal oldgap, safmin; 00032 extern /* Subroutine */ int xerbla_(char *, integer *); 00033 doublereal newgap, thresh; 00034 00035 00036 /* -- LAPACK routine (version 3.2) -- */ 00037 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00038 /* November 2006 */ 00039 00040 /* .. Scalar Arguments .. */ 00041 /* .. */ 00042 /* .. Array Arguments .. */ 00043 /* .. */ 00044 00045 /* Purpose */ 00046 /* ======= */ 00047 00048 /* DDISNA computes the reciprocal condition numbers for the eigenvectors */ 00049 /* of a real symmetric or complex Hermitian matrix or for the left or */ 00050 /* right singular vectors of a general m-by-n matrix. The reciprocal */ 00051 /* condition number is the 'gap' between the corresponding eigenvalue or */ 00052 /* singular value and the nearest other one. */ 00053 00054 /* The bound on the error, measured by angle in radians, in the I-th */ 00055 /* computed vector is given by */ 00056 00057 /* DLAMCH( 'E' ) * ( ANORM / SEP( I ) ) */ 00058 00059 /* where ANORM = 2-norm(A) = max( abs( D(j) ) ). SEP(I) is not allowed */ 00060 /* to be smaller than DLAMCH( 'E' )*ANORM in order to limit the size of */ 00061 /* the error bound. */ 00062 00063 /* DDISNA may also be used to compute error bounds for eigenvectors of */ 00064 /* the generalized symmetric definite eigenproblem. */ 00065 00066 /* Arguments */ 00067 /* ========= */ 00068 00069 /* JOB (input) CHARACTER*1 */ 00070 /* Specifies for which problem the reciprocal condition numbers */ 00071 /* should be computed: */ 00072 /* = 'E': the eigenvectors of a symmetric/Hermitian matrix; */ 00073 /* = 'L': the left singular vectors of a general matrix; */ 00074 /* = 'R': the right singular vectors of a general matrix. */ 00075 00076 /* M (input) INTEGER */ 00077 /* The number of rows of the matrix. M >= 0. */ 00078 00079 /* N (input) INTEGER */ 00080 /* If JOB = 'L' or 'R', the number of columns of the matrix, */ 00081 /* in which case N >= 0. Ignored if JOB = 'E'. */ 00082 00083 /* D (input) DOUBLE PRECISION array, dimension (M) if JOB = 'E' */ 00084 /* dimension (min(M,N)) if JOB = 'L' or 'R' */ 00085 /* The eigenvalues (if JOB = 'E') or singular values (if JOB = */ 00086 /* 'L' or 'R') of the matrix, in either increasing or decreasing */ 00087 /* order. If singular values, they must be non-negative. */ 00088 00089 /* SEP (output) DOUBLE PRECISION array, dimension (M) if JOB = 'E' */ 00090 /* dimension (min(M,N)) if JOB = 'L' or 'R' */ 00091 /* The reciprocal condition numbers of the vectors. */ 00092 00093 /* INFO (output) INTEGER */ 00094 /* = 0: successful exit. */ 00095 /* < 0: if INFO = -i, the i-th argument had an illegal value. */ 00096 00097 /* ===================================================================== */ 00098 00099 /* .. Parameters .. */ 00100 /* .. */ 00101 /* .. Local Scalars .. */ 00102 /* .. */ 00103 /* .. External Functions .. */ 00104 /* .. */ 00105 /* .. Intrinsic Functions .. */ 00106 /* .. */ 00107 /* .. External Subroutines .. */ 00108 /* .. */ 00109 /* .. Executable Statements .. */ 00110 00111 /* Test the input arguments */ 00112 00113 /* Parameter adjustments */ 00114 --sep; 00115 --d__; 00116 00117 /* Function Body */ 00118 *info = 0; 00119 eigen = lsame_(job, "E"); 00120 left = lsame_(job, "L"); 00121 right = lsame_(job, "R"); 00122 sing = left || right; 00123 if (eigen) { 00124 k = *m; 00125 } else if (sing) { 00126 k = min(*m,*n); 00127 } 00128 if (! eigen && ! sing) { 00129 *info = -1; 00130 } else if (*m < 0) { 00131 *info = -2; 00132 } else if (k < 0) { 00133 *info = -3; 00134 } else { 00135 incr = TRUE_; 00136 decr = TRUE_; 00137 i__1 = k - 1; 00138 for (i__ = 1; i__ <= i__1; ++i__) { 00139 if (incr) { 00140 incr = incr && d__[i__] <= d__[i__ + 1]; 00141 } 00142 if (decr) { 00143 decr = decr && d__[i__] >= d__[i__ + 1]; 00144 } 00145 /* L10: */ 00146 } 00147 if (sing && k > 0) { 00148 if (incr) { 00149 incr = incr && 0. <= d__[1]; 00150 } 00151 if (decr) { 00152 decr = decr && d__[k] >= 0.; 00153 } 00154 } 00155 if (! (incr || decr)) { 00156 *info = -4; 00157 } 00158 } 00159 if (*info != 0) { 00160 i__1 = -(*info); 00161 xerbla_("DDISNA", &i__1); 00162 return 0; 00163 } 00164 00165 /* Quick return if possible */ 00166 00167 if (k == 0) { 00168 return 0; 00169 } 00170 00171 /* Compute reciprocal condition numbers */ 00172 00173 if (k == 1) { 00174 sep[1] = dlamch_("O"); 00175 } else { 00176 oldgap = (d__1 = d__[2] - d__[1], abs(d__1)); 00177 sep[1] = oldgap; 00178 i__1 = k - 1; 00179 for (i__ = 2; i__ <= i__1; ++i__) { 00180 newgap = (d__1 = d__[i__ + 1] - d__[i__], abs(d__1)); 00181 sep[i__] = min(oldgap,newgap); 00182 oldgap = newgap; 00183 /* L20: */ 00184 } 00185 sep[k] = oldgap; 00186 } 00187 if (sing) { 00188 if (left && *m > *n || right && *m < *n) { 00189 if (incr) { 00190 sep[1] = min(sep[1],d__[1]); 00191 } 00192 if (decr) { 00193 /* Computing MIN */ 00194 d__1 = sep[k], d__2 = d__[k]; 00195 sep[k] = min(d__1,d__2); 00196 } 00197 } 00198 } 00199 00200 /* Ensure that reciprocal condition numbers are not less than */ 00201 /* threshold, in order to limit the size of the error bound */ 00202 00203 eps = dlamch_("E"); 00204 safmin = dlamch_("S"); 00205 /* Computing MAX */ 00206 d__2 = abs(d__[1]), d__3 = (d__1 = d__[k], abs(d__1)); 00207 anorm = max(d__2,d__3); 00208 if (anorm == 0.) { 00209 thresh = eps; 00210 } else { 00211 /* Computing MAX */ 00212 d__1 = eps * anorm; 00213 thresh = max(d__1,safmin); 00214 } 00215 i__1 = k; 00216 for (i__ = 1; i__ <= i__1; ++i__) { 00217 /* Computing MAX */ 00218 d__1 = sep[i__]; 00219 sep[i__] = max(d__1,thresh); 00220 /* L30: */ 00221 } 00222 00223 return 0; 00224 00225 /* End of DDISNA */ 00226 00227 } /* ddisna_ */