cunmr3.c
Go to the documentation of this file.
00001 /* cunmr3.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Subroutine */ int cunmr3_(char *side, char *trans, integer *m, integer *n, 
00017         integer *k, integer *l, complex *a, integer *lda, complex *tau, 
00018         complex *c__, integer *ldc, complex *work, integer *info)
00019 {
00020     /* System generated locals */
00021     integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3;
00022     complex q__1;
00023 
00024     /* Builtin functions */
00025     void r_cnjg(complex *, complex *);
00026 
00027     /* Local variables */
00028     integer i__, i1, i2, i3, ja, ic, jc, mi, ni, nq;
00029     logical left;
00030     complex taui;
00031     extern logical lsame_(char *, char *);
00032     extern /* Subroutine */ int clarz_(char *, integer *, integer *, integer *
00033 , complex *, integer *, complex *, complex *, integer *, complex *
00034 ), xerbla_(char *, integer *);
00035     logical notran;
00036 
00037 
00038 /*  -- LAPACK routine (version 3.2) -- */
00039 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00040 /*     November 2006 */
00041 
00042 /*     .. Scalar Arguments .. */
00043 /*     .. */
00044 /*     .. Array Arguments .. */
00045 /*     .. */
00046 
00047 /*  Purpose */
00048 /*  ======= */
00049 
00050 /*  CUNMR3 overwrites the general complex m by n matrix C with */
00051 
00052 /*        Q * C  if SIDE = 'L' and TRANS = 'N', or */
00053 
00054 /*        Q'* C  if SIDE = 'L' and TRANS = 'C', or */
00055 
00056 /*        C * Q  if SIDE = 'R' and TRANS = 'N', or */
00057 
00058 /*        C * Q' if SIDE = 'R' and TRANS = 'C', */
00059 
00060 /*  where Q is a complex unitary matrix defined as the product of k */
00061 /*  elementary reflectors */
00062 
00063 /*        Q = H(1) H(2) . . . H(k) */
00064 
00065 /*  as returned by CTZRZF. Q is of order m if SIDE = 'L' and of order n */
00066 /*  if SIDE = 'R'. */
00067 
00068 /*  Arguments */
00069 /*  ========= */
00070 
00071 /*  SIDE    (input) CHARACTER*1 */
00072 /*          = 'L': apply Q or Q' from the Left */
00073 /*          = 'R': apply Q or Q' from the Right */
00074 
00075 /*  TRANS   (input) CHARACTER*1 */
00076 /*          = 'N': apply Q  (No transpose) */
00077 /*          = 'C': apply Q' (Conjugate transpose) */
00078 
00079 /*  M       (input) INTEGER */
00080 /*          The number of rows of the matrix C. M >= 0. */
00081 
00082 /*  N       (input) INTEGER */
00083 /*          The number of columns of the matrix C. N >= 0. */
00084 
00085 /*  K       (input) INTEGER */
00086 /*          The number of elementary reflectors whose product defines */
00087 /*          the matrix Q. */
00088 /*          If SIDE = 'L', M >= K >= 0; */
00089 /*          if SIDE = 'R', N >= K >= 0. */
00090 
00091 /*  L       (input) INTEGER */
00092 /*          The number of columns of the matrix A containing */
00093 /*          the meaningful part of the Householder reflectors. */
00094 /*          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0. */
00095 
00096 /*  A       (input) COMPLEX array, dimension */
00097 /*                               (LDA,M) if SIDE = 'L', */
00098 /*                               (LDA,N) if SIDE = 'R' */
00099 /*          The i-th row must contain the vector which defines the */
00100 /*          elementary reflector H(i), for i = 1,2,...,k, as returned by */
00101 /*          CTZRZF in the last k rows of its array argument A. */
00102 /*          A is modified by the routine but restored on exit. */
00103 
00104 /*  LDA     (input) INTEGER */
00105 /*          The leading dimension of the array A. LDA >= max(1,K). */
00106 
00107 /*  TAU     (input) COMPLEX array, dimension (K) */
00108 /*          TAU(i) must contain the scalar factor of the elementary */
00109 /*          reflector H(i), as returned by CTZRZF. */
00110 
00111 /*  C       (input/output) COMPLEX array, dimension (LDC,N) */
00112 /*          On entry, the m-by-n matrix C. */
00113 /*          On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q. */
00114 
00115 /*  LDC     (input) INTEGER */
00116 /*          The leading dimension of the array C. LDC >= max(1,M). */
00117 
00118 /*  WORK    (workspace) COMPLEX array, dimension */
00119 /*                                   (N) if SIDE = 'L', */
00120 /*                                   (M) if SIDE = 'R' */
00121 
00122 /*  INFO    (output) INTEGER */
00123 /*          = 0: successful exit */
00124 /*          < 0: if INFO = -i, the i-th argument had an illegal value */
00125 
00126 /*  Further Details */
00127 /*  =============== */
00128 
00129 /*  Based on contributions by */
00130 /*    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */
00131 
00132 /*  ===================================================================== */
00133 
00134 /*     .. Local Scalars .. */
00135 /*     .. */
00136 /*     .. External Functions .. */
00137 /*     .. */
00138 /*     .. External Subroutines .. */
00139 /*     .. */
00140 /*     .. Intrinsic Functions .. */
00141 /*     .. */
00142 /*     .. Executable Statements .. */
00143 
00144 /*     Test the input arguments */
00145 
00146     /* Parameter adjustments */
00147     a_dim1 = *lda;
00148     a_offset = 1 + a_dim1;
00149     a -= a_offset;
00150     --tau;
00151     c_dim1 = *ldc;
00152     c_offset = 1 + c_dim1;
00153     c__ -= c_offset;
00154     --work;
00155 
00156     /* Function Body */
00157     *info = 0;
00158     left = lsame_(side, "L");
00159     notran = lsame_(trans, "N");
00160 
00161 /*     NQ is the order of Q */
00162 
00163     if (left) {
00164         nq = *m;
00165     } else {
00166         nq = *n;
00167     }
00168     if (! left && ! lsame_(side, "R")) {
00169         *info = -1;
00170     } else if (! notran && ! lsame_(trans, "C")) {
00171         *info = -2;
00172     } else if (*m < 0) {
00173         *info = -3;
00174     } else if (*n < 0) {
00175         *info = -4;
00176     } else if (*k < 0 || *k > nq) {
00177         *info = -5;
00178     } else if (*l < 0 || left && *l > *m || ! left && *l > *n) {
00179         *info = -6;
00180     } else if (*lda < max(1,*k)) {
00181         *info = -8;
00182     } else if (*ldc < max(1,*m)) {
00183         *info = -11;
00184     }
00185     if (*info != 0) {
00186         i__1 = -(*info);
00187         xerbla_("CUNMR3", &i__1);
00188         return 0;
00189     }
00190 
00191 /*     Quick return if possible */
00192 
00193     if (*m == 0 || *n == 0 || *k == 0) {
00194         return 0;
00195     }
00196 
00197     if (left && ! notran || ! left && notran) {
00198         i1 = 1;
00199         i2 = *k;
00200         i3 = 1;
00201     } else {
00202         i1 = *k;
00203         i2 = 1;
00204         i3 = -1;
00205     }
00206 
00207     if (left) {
00208         ni = *n;
00209         ja = *m - *l + 1;
00210         jc = 1;
00211     } else {
00212         mi = *m;
00213         ja = *n - *l + 1;
00214         ic = 1;
00215     }
00216 
00217     i__1 = i2;
00218     i__2 = i3;
00219     for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
00220         if (left) {
00221 
00222 /*           H(i) or H(i)' is applied to C(i:m,1:n) */
00223 
00224             mi = *m - i__ + 1;
00225             ic = i__;
00226         } else {
00227 
00228 /*           H(i) or H(i)' is applied to C(1:m,i:n) */
00229 
00230             ni = *n - i__ + 1;
00231             jc = i__;
00232         }
00233 
00234 /*        Apply H(i) or H(i)' */
00235 
00236         if (notran) {
00237             i__3 = i__;
00238             taui.r = tau[i__3].r, taui.i = tau[i__3].i;
00239         } else {
00240             r_cnjg(&q__1, &tau[i__]);
00241             taui.r = q__1.r, taui.i = q__1.i;
00242         }
00243         clarz_(side, &mi, &ni, l, &a[i__ + ja * a_dim1], lda, &taui, &c__[ic 
00244                 + jc * c_dim1], ldc, &work[1]);
00245 
00246 /* L10: */
00247     }
00248 
00249     return 0;
00250 
00251 /*     End of CUNMR3 */
00252 
00253 } /* cunmr3_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:35