00001 /* cunm2l.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 00020 /* Subroutine */ int cunm2l_(char *side, char *trans, integer *m, integer *n, 00021 integer *k, complex *a, integer *lda, complex *tau, complex *c__, 00022 integer *ldc, complex *work, integer *info) 00023 { 00024 /* System generated locals */ 00025 integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3; 00026 complex q__1; 00027 00028 /* Builtin functions */ 00029 void r_cnjg(complex *, complex *); 00030 00031 /* Local variables */ 00032 integer i__, i1, i2, i3, mi, ni, nq; 00033 complex aii; 00034 logical left; 00035 complex taui; 00036 extern /* Subroutine */ int clarf_(char *, integer *, integer *, complex * 00037 , integer *, complex *, complex *, integer *, complex *); 00038 extern logical lsame_(char *, char *); 00039 extern /* Subroutine */ int xerbla_(char *, integer *); 00040 logical notran; 00041 00042 00043 /* -- LAPACK routine (version 3.2) -- */ 00044 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00045 /* November 2006 */ 00046 00047 /* .. Scalar Arguments .. */ 00048 /* .. */ 00049 /* .. Array Arguments .. */ 00050 /* .. */ 00051 00052 /* Purpose */ 00053 /* ======= */ 00054 00055 /* CUNM2L overwrites the general complex m-by-n matrix C with */ 00056 00057 /* Q * C if SIDE = 'L' and TRANS = 'N', or */ 00058 00059 /* Q'* C if SIDE = 'L' and TRANS = 'C', or */ 00060 00061 /* C * Q if SIDE = 'R' and TRANS = 'N', or */ 00062 00063 /* C * Q' if SIDE = 'R' and TRANS = 'C', */ 00064 00065 /* where Q is a complex unitary matrix defined as the product of k */ 00066 /* elementary reflectors */ 00067 00068 /* Q = H(k) . . . H(2) H(1) */ 00069 00070 /* as returned by CGEQLF. Q is of order m if SIDE = 'L' and of order n */ 00071 /* if SIDE = 'R'. */ 00072 00073 /* Arguments */ 00074 /* ========= */ 00075 00076 /* SIDE (input) CHARACTER*1 */ 00077 /* = 'L': apply Q or Q' from the Left */ 00078 /* = 'R': apply Q or Q' from the Right */ 00079 00080 /* TRANS (input) CHARACTER*1 */ 00081 /* = 'N': apply Q (No transpose) */ 00082 /* = 'C': apply Q' (Conjugate transpose) */ 00083 00084 /* M (input) INTEGER */ 00085 /* The number of rows of the matrix C. M >= 0. */ 00086 00087 /* N (input) INTEGER */ 00088 /* The number of columns of the matrix C. N >= 0. */ 00089 00090 /* K (input) INTEGER */ 00091 /* The number of elementary reflectors whose product defines */ 00092 /* the matrix Q. */ 00093 /* If SIDE = 'L', M >= K >= 0; */ 00094 /* if SIDE = 'R', N >= K >= 0. */ 00095 00096 /* A (input) COMPLEX array, dimension (LDA,K) */ 00097 /* The i-th column must contain the vector which defines the */ 00098 /* elementary reflector H(i), for i = 1,2,...,k, as returned by */ 00099 /* CGEQLF in the last k columns of its array argument A. */ 00100 /* A is modified by the routine but restored on exit. */ 00101 00102 /* LDA (input) INTEGER */ 00103 /* The leading dimension of the array A. */ 00104 /* If SIDE = 'L', LDA >= max(1,M); */ 00105 /* if SIDE = 'R', LDA >= max(1,N). */ 00106 00107 /* TAU (input) COMPLEX array, dimension (K) */ 00108 /* TAU(i) must contain the scalar factor of the elementary */ 00109 /* reflector H(i), as returned by CGEQLF. */ 00110 00111 /* C (input/output) COMPLEX array, dimension (LDC,N) */ 00112 /* On entry, the m-by-n matrix C. */ 00113 /* On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q. */ 00114 00115 /* LDC (input) INTEGER */ 00116 /* The leading dimension of the array C. LDC >= max(1,M). */ 00117 00118 /* WORK (workspace) COMPLEX array, dimension */ 00119 /* (N) if SIDE = 'L', */ 00120 /* (M) if SIDE = 'R' */ 00121 00122 /* INFO (output) INTEGER */ 00123 /* = 0: successful exit */ 00124 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00125 00126 /* ===================================================================== */ 00127 00128 /* .. Parameters .. */ 00129 /* .. */ 00130 /* .. Local Scalars .. */ 00131 /* .. */ 00132 /* .. External Functions .. */ 00133 /* .. */ 00134 /* .. External Subroutines .. */ 00135 /* .. */ 00136 /* .. Intrinsic Functions .. */ 00137 /* .. */ 00138 /* .. Executable Statements .. */ 00139 00140 /* Test the input arguments */ 00141 00142 /* Parameter adjustments */ 00143 a_dim1 = *lda; 00144 a_offset = 1 + a_dim1; 00145 a -= a_offset; 00146 --tau; 00147 c_dim1 = *ldc; 00148 c_offset = 1 + c_dim1; 00149 c__ -= c_offset; 00150 --work; 00151 00152 /* Function Body */ 00153 *info = 0; 00154 left = lsame_(side, "L"); 00155 notran = lsame_(trans, "N"); 00156 00157 /* NQ is the order of Q */ 00158 00159 if (left) { 00160 nq = *m; 00161 } else { 00162 nq = *n; 00163 } 00164 if (! left && ! lsame_(side, "R")) { 00165 *info = -1; 00166 } else if (! notran && ! lsame_(trans, "C")) { 00167 *info = -2; 00168 } else if (*m < 0) { 00169 *info = -3; 00170 } else if (*n < 0) { 00171 *info = -4; 00172 } else if (*k < 0 || *k > nq) { 00173 *info = -5; 00174 } else if (*lda < max(1,nq)) { 00175 *info = -7; 00176 } else if (*ldc < max(1,*m)) { 00177 *info = -10; 00178 } 00179 if (*info != 0) { 00180 i__1 = -(*info); 00181 xerbla_("CUNM2L", &i__1); 00182 return 0; 00183 } 00184 00185 /* Quick return if possible */ 00186 00187 if (*m == 0 || *n == 0 || *k == 0) { 00188 return 0; 00189 } 00190 00191 if (left && notran || ! left && ! notran) { 00192 i1 = 1; 00193 i2 = *k; 00194 i3 = 1; 00195 } else { 00196 i1 = *k; 00197 i2 = 1; 00198 i3 = -1; 00199 } 00200 00201 if (left) { 00202 ni = *n; 00203 } else { 00204 mi = *m; 00205 } 00206 00207 i__1 = i2; 00208 i__2 = i3; 00209 for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { 00210 if (left) { 00211 00212 /* H(i) or H(i)' is applied to C(1:m-k+i,1:n) */ 00213 00214 mi = *m - *k + i__; 00215 } else { 00216 00217 /* H(i) or H(i)' is applied to C(1:m,1:n-k+i) */ 00218 00219 ni = *n - *k + i__; 00220 } 00221 00222 /* Apply H(i) or H(i)' */ 00223 00224 if (notran) { 00225 i__3 = i__; 00226 taui.r = tau[i__3].r, taui.i = tau[i__3].i; 00227 } else { 00228 r_cnjg(&q__1, &tau[i__]); 00229 taui.r = q__1.r, taui.i = q__1.i; 00230 } 00231 i__3 = nq - *k + i__ + i__ * a_dim1; 00232 aii.r = a[i__3].r, aii.i = a[i__3].i; 00233 i__3 = nq - *k + i__ + i__ * a_dim1; 00234 a[i__3].r = 1.f, a[i__3].i = 0.f; 00235 clarf_(side, &mi, &ni, &a[i__ * a_dim1 + 1], &c__1, &taui, &c__[ 00236 c_offset], ldc, &work[1]); 00237 i__3 = nq - *k + i__ + i__ * a_dim1; 00238 a[i__3].r = aii.r, a[i__3].i = aii.i; 00239 /* L10: */ 00240 } 00241 return 0; 00242 00243 /* End of CUNM2L */ 00244 00245 } /* cunm2l_ */