00001 /* ctpt01.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 00020 /* Subroutine */ int ctpt01_(char *uplo, char *diag, integer *n, complex *ap, 00021 complex *ainvp, real *rcond, real *rwork, real *resid) 00022 { 00023 /* System generated locals */ 00024 integer i__1, i__2, i__3; 00025 complex q__1; 00026 00027 /* Local variables */ 00028 integer j, jc; 00029 real eps; 00030 extern logical lsame_(char *, char *); 00031 real anorm; 00032 logical unitd; 00033 extern /* Subroutine */ int ctpmv_(char *, char *, char *, integer *, 00034 complex *, complex *, integer *); 00035 extern doublereal slamch_(char *), clantp_(char *, char *, char *, 00036 integer *, complex *, real *); 00037 real ainvnm; 00038 00039 00040 /* -- LAPACK test routine (version 3.1) -- */ 00041 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00042 /* November 2006 */ 00043 00044 /* .. Scalar Arguments .. */ 00045 /* .. */ 00046 /* .. Array Arguments .. */ 00047 /* .. */ 00048 00049 /* Purpose */ 00050 /* ======= */ 00051 00052 /* CTPT01 computes the residual for a triangular matrix A times its */ 00053 /* inverse when A is stored in packed format: */ 00054 /* RESID = norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS ), */ 00055 /* where EPS is the machine epsilon. */ 00056 00057 /* Arguments */ 00058 /* ========== */ 00059 00060 /* UPLO (input) CHARACTER*1 */ 00061 /* Specifies whether the matrix A is upper or lower triangular. */ 00062 /* = 'U': Upper triangular */ 00063 /* = 'L': Lower triangular */ 00064 00065 /* DIAG (input) CHARACTER*1 */ 00066 /* Specifies whether or not the matrix A is unit triangular. */ 00067 /* = 'N': Non-unit triangular */ 00068 /* = 'U': Unit triangular */ 00069 00070 /* N (input) INTEGER */ 00071 /* The order of the matrix A. N >= 0. */ 00072 00073 /* AP (input) COMPLEX array, dimension (N*(N+1)/2) */ 00074 /* The original upper or lower triangular matrix A, packed */ 00075 /* columnwise in a linear array. The j-th column of A is stored */ 00076 /* in the array AP as follows: */ 00077 /* if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j; */ 00078 /* if UPLO = 'L', */ 00079 /* AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n. */ 00080 00081 /* AINVP (input) COMPLEX array, dimension (N*(N+1)/2) */ 00082 /* On entry, the (triangular) inverse of the matrix A, packed */ 00083 /* columnwise in a linear array as in AP. */ 00084 /* On exit, the contents of AINVP are destroyed. */ 00085 00086 /* RCOND (output) REAL */ 00087 /* The reciprocal condition number of A, computed as */ 00088 /* 1/(norm(A) * norm(AINV)). */ 00089 00090 /* RWORK (workspace) REAL array, dimension (N) */ 00091 00092 /* RESID (output) REAL */ 00093 /* norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS ) */ 00094 00095 /* ===================================================================== */ 00096 00097 /* .. Parameters .. */ 00098 /* .. */ 00099 /* .. Local Scalars .. */ 00100 /* .. */ 00101 /* .. External Functions .. */ 00102 /* .. */ 00103 /* .. External Subroutines .. */ 00104 /* .. */ 00105 /* .. Intrinsic Functions .. */ 00106 /* .. */ 00107 /* .. Executable Statements .. */ 00108 00109 /* Quick exit if N = 0. */ 00110 00111 /* Parameter adjustments */ 00112 --rwork; 00113 --ainvp; 00114 --ap; 00115 00116 /* Function Body */ 00117 if (*n <= 0) { 00118 *rcond = 1.f; 00119 *resid = 0.f; 00120 return 0; 00121 } 00122 00123 /* Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0. */ 00124 00125 eps = slamch_("Epsilon"); 00126 anorm = clantp_("1", uplo, diag, n, &ap[1], &rwork[1]); 00127 ainvnm = clantp_("1", uplo, diag, n, &ainvp[1], &rwork[1]); 00128 if (anorm <= 0.f || ainvnm <= 0.f) { 00129 *rcond = 0.f; 00130 *resid = 1.f / eps; 00131 return 0; 00132 } 00133 *rcond = 1.f / anorm / ainvnm; 00134 00135 /* Compute A * AINV, overwriting AINV. */ 00136 00137 unitd = lsame_(diag, "U"); 00138 if (lsame_(uplo, "U")) { 00139 jc = 1; 00140 i__1 = *n; 00141 for (j = 1; j <= i__1; ++j) { 00142 if (unitd) { 00143 i__2 = jc + j - 1; 00144 ainvp[i__2].r = 1.f, ainvp[i__2].i = 0.f; 00145 } 00146 00147 /* Form the j-th column of A*AINV. */ 00148 00149 ctpmv_("Upper", "No transpose", diag, &j, &ap[1], &ainvp[jc], & 00150 c__1); 00151 00152 /* Subtract 1 from the diagonal to form A*AINV - I. */ 00153 00154 i__2 = jc + j - 1; 00155 i__3 = jc + j - 1; 00156 q__1.r = ainvp[i__3].r - 1.f, q__1.i = ainvp[i__3].i; 00157 ainvp[i__2].r = q__1.r, ainvp[i__2].i = q__1.i; 00158 jc += j; 00159 /* L10: */ 00160 } 00161 } else { 00162 jc = 1; 00163 i__1 = *n; 00164 for (j = 1; j <= i__1; ++j) { 00165 if (unitd) { 00166 i__2 = jc; 00167 ainvp[i__2].r = 1.f, ainvp[i__2].i = 0.f; 00168 } 00169 00170 /* Form the j-th column of A*AINV. */ 00171 00172 i__2 = *n - j + 1; 00173 ctpmv_("Lower", "No transpose", diag, &i__2, &ap[jc], &ainvp[jc], 00174 &c__1); 00175 00176 /* Subtract 1 from the diagonal to form A*AINV - I. */ 00177 00178 i__2 = jc; 00179 i__3 = jc; 00180 q__1.r = ainvp[i__3].r - 1.f, q__1.i = ainvp[i__3].i; 00181 ainvp[i__2].r = q__1.r, ainvp[i__2].i = q__1.i; 00182 jc = jc + *n - j + 1; 00183 /* L20: */ 00184 } 00185 } 00186 00187 /* Compute norm(A*AINV - I) / (N * norm(A) * norm(AINV) * EPS) */ 00188 00189 *resid = clantp_("1", uplo, "Non-unit", n, &ainvp[1], &rwork[1]); 00190 00191 *resid = *resid * *rcond / (real) (*n) / eps; 00192 00193 return 0; 00194 00195 /* End of CTPT01 */ 00196 00197 } /* ctpt01_ */