00001 /* ctbt03.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 00020 /* Subroutine */ int ctbt03_(char *uplo, char *trans, char *diag, integer *n, 00021 integer *kd, integer *nrhs, complex *ab, integer *ldab, real *scale, 00022 real *cnorm, real *tscal, complex *x, integer *ldx, complex *b, 00023 integer *ldb, complex *work, real *resid) 00024 { 00025 /* System generated locals */ 00026 integer ab_dim1, ab_offset, b_dim1, b_offset, x_dim1, x_offset, i__1; 00027 real r__1, r__2; 00028 complex q__1; 00029 00030 /* Builtin functions */ 00031 double c_abs(complex *); 00032 00033 /* Local variables */ 00034 integer j, ix; 00035 real eps, err; 00036 extern logical lsame_(char *, char *); 00037 real xscal; 00038 extern /* Subroutine */ int ctbmv_(char *, char *, char *, integer *, 00039 integer *, complex *, integer *, complex *, integer *), ccopy_(integer *, complex *, integer *, complex * 00040 , integer *), caxpy_(integer *, complex *, complex *, integer *, 00041 complex *, integer *); 00042 real tnorm, xnorm; 00043 extern integer icamax_(integer *, complex *, integer *); 00044 extern doublereal slamch_(char *); 00045 extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer 00046 *); 00047 real smlnum; 00048 00049 00050 /* -- LAPACK test routine (version 3.1) -- */ 00051 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00052 /* November 2006 */ 00053 00054 /* .. Scalar Arguments .. */ 00055 /* .. */ 00056 /* .. Array Arguments .. */ 00057 /* .. */ 00058 00059 /* Purpose */ 00060 /* ======= */ 00061 00062 /* CTBT03 computes the residual for the solution to a scaled triangular */ 00063 /* system of equations A*x = s*b, A**T *x = s*b, or A**H *x = s*b */ 00064 /* when A is a triangular band matrix. Here A**T denotes the transpose */ 00065 /* of A, A**H denotes the conjugate transpose of A, s is a scalar, and */ 00066 /* x and b are N by NRHS matrices. The test ratio is the maximum over */ 00067 /* the number of right hand sides of */ 00068 /* norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ), */ 00069 /* where op(A) denotes A, A**T, or A**H, and EPS is the machine epsilon. */ 00070 00071 /* Arguments */ 00072 /* ========= */ 00073 00074 /* UPLO (input) CHARACTER*1 */ 00075 /* Specifies whether the matrix A is upper or lower triangular. */ 00076 /* = 'U': Upper triangular */ 00077 /* = 'L': Lower triangular */ 00078 00079 /* TRANS (input) CHARACTER*1 */ 00080 /* Specifies the operation applied to A. */ 00081 /* = 'N': A *x = s*b (No transpose) */ 00082 /* = 'T': A**T *x = s*b (Transpose) */ 00083 /* = 'C': A**H *x = s*b (Conjugate transpose) */ 00084 00085 /* DIAG (input) CHARACTER*1 */ 00086 /* Specifies whether or not the matrix A is unit triangular. */ 00087 /* = 'N': Non-unit triangular */ 00088 /* = 'U': Unit triangular */ 00089 00090 /* N (input) INTEGER */ 00091 /* The order of the matrix A. N >= 0. */ 00092 00093 /* KD (input) INTEGER */ 00094 /* The number of superdiagonals or subdiagonals of the */ 00095 /* triangular band matrix A. KD >= 0. */ 00096 00097 /* NRHS (input) INTEGER */ 00098 /* The number of right hand sides, i.e., the number of columns */ 00099 /* of the matrices X and B. NRHS >= 0. */ 00100 00101 /* AB (input) COMPLEX array, dimension (LDAB,N) */ 00102 /* The upper or lower triangular band matrix A, stored in the */ 00103 /* first kd+1 rows of the array. The j-th column of A is stored */ 00104 /* in the j-th column of the array AB as follows: */ 00105 /* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */ 00106 /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */ 00107 00108 /* LDAB (input) INTEGER */ 00109 /* The leading dimension of the array AB. LDAB >= KD+1. */ 00110 00111 /* SCALE (input) REAL */ 00112 /* The scaling factor s used in solving the triangular system. */ 00113 00114 /* CNORM (input) REAL array, dimension (N) */ 00115 /* The 1-norms of the columns of A, not counting the diagonal. */ 00116 00117 /* TSCAL (input) REAL */ 00118 /* The scaling factor used in computing the 1-norms in CNORM. */ 00119 /* CNORM actually contains the column norms of TSCAL*A. */ 00120 00121 /* X (input) COMPLEX array, dimension (LDX,NRHS) */ 00122 /* The computed solution vectors for the system of linear */ 00123 /* equations. */ 00124 00125 /* LDX (input) INTEGER */ 00126 /* The leading dimension of the array X. LDX >= max(1,N). */ 00127 00128 /* B (input) COMPLEX array, dimension (LDB,NRHS) */ 00129 /* The right hand side vectors for the system of linear */ 00130 /* equations. */ 00131 00132 /* LDB (input) INTEGER */ 00133 /* The leading dimension of the array B. LDB >= max(1,N). */ 00134 00135 /* WORK (workspace) COMPLEX array, dimension (N) */ 00136 00137 /* RESID (output) REAL */ 00138 /* The maximum over the number of right hand sides of */ 00139 /* norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ). */ 00140 00141 /* ===================================================================== */ 00142 00143 00144 /* .. Parameters .. */ 00145 /* .. */ 00146 /* .. Local Scalars .. */ 00147 /* .. */ 00148 /* .. External Functions .. */ 00149 /* .. */ 00150 /* .. External Subroutines .. */ 00151 /* .. */ 00152 /* .. Intrinsic Functions .. */ 00153 /* .. */ 00154 /* .. Executable Statements .. */ 00155 00156 /* Quick exit if N = 0 */ 00157 00158 /* Parameter adjustments */ 00159 ab_dim1 = *ldab; 00160 ab_offset = 1 + ab_dim1; 00161 ab -= ab_offset; 00162 --cnorm; 00163 x_dim1 = *ldx; 00164 x_offset = 1 + x_dim1; 00165 x -= x_offset; 00166 b_dim1 = *ldb; 00167 b_offset = 1 + b_dim1; 00168 b -= b_offset; 00169 --work; 00170 00171 /* Function Body */ 00172 if (*n <= 0 || *nrhs <= 0) { 00173 *resid = 0.f; 00174 return 0; 00175 } 00176 eps = slamch_("Epsilon"); 00177 smlnum = slamch_("Safe minimum"); 00178 00179 /* Compute the norm of the triangular matrix A using the column */ 00180 /* norms already computed by CLATBS. */ 00181 00182 tnorm = 0.f; 00183 if (lsame_(diag, "N")) { 00184 if (lsame_(uplo, "U")) { 00185 i__1 = *n; 00186 for (j = 1; j <= i__1; ++j) { 00187 /* Computing MAX */ 00188 r__1 = tnorm, r__2 = *tscal * c_abs(&ab[*kd + 1 + j * ab_dim1] 00189 ) + cnorm[j]; 00190 tnorm = dmax(r__1,r__2); 00191 /* L10: */ 00192 } 00193 } else { 00194 i__1 = *n; 00195 for (j = 1; j <= i__1; ++j) { 00196 /* Computing MAX */ 00197 r__1 = tnorm, r__2 = *tscal * c_abs(&ab[j * ab_dim1 + 1]) + 00198 cnorm[j]; 00199 tnorm = dmax(r__1,r__2); 00200 /* L20: */ 00201 } 00202 } 00203 } else { 00204 i__1 = *n; 00205 for (j = 1; j <= i__1; ++j) { 00206 /* Computing MAX */ 00207 r__1 = tnorm, r__2 = *tscal + cnorm[j]; 00208 tnorm = dmax(r__1,r__2); 00209 /* L30: */ 00210 } 00211 } 00212 00213 /* Compute the maximum over the number of right hand sides of */ 00214 /* norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ). */ 00215 00216 *resid = 0.f; 00217 i__1 = *nrhs; 00218 for (j = 1; j <= i__1; ++j) { 00219 ccopy_(n, &x[j * x_dim1 + 1], &c__1, &work[1], &c__1); 00220 ix = icamax_(n, &work[1], &c__1); 00221 /* Computing MAX */ 00222 r__1 = 1.f, r__2 = c_abs(&x[ix + j * x_dim1]); 00223 xnorm = dmax(r__1,r__2); 00224 xscal = 1.f / xnorm / (real) (*kd + 1); 00225 csscal_(n, &xscal, &work[1], &c__1); 00226 ctbmv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &work[1], & 00227 c__1); 00228 r__1 = -(*scale) * xscal; 00229 q__1.r = r__1, q__1.i = 0.f; 00230 caxpy_(n, &q__1, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1); 00231 ix = icamax_(n, &work[1], &c__1); 00232 err = *tscal * c_abs(&work[ix]); 00233 ix = icamax_(n, &x[j * x_dim1 + 1], &c__1); 00234 xnorm = c_abs(&x[ix + j * x_dim1]); 00235 if (err * smlnum <= xnorm) { 00236 if (xnorm > 0.f) { 00237 err /= xnorm; 00238 } 00239 } else { 00240 if (err > 0.f) { 00241 err = 1.f / eps; 00242 } 00243 } 00244 if (err * smlnum <= tnorm) { 00245 if (tnorm > 0.f) { 00246 err /= tnorm; 00247 } 00248 } else { 00249 if (err > 0.f) { 00250 err = 1.f / eps; 00251 } 00252 } 00253 *resid = dmax(*resid,err); 00254 /* L40: */ 00255 } 00256 00257 return 0; 00258 00259 /* End of CTBT03 */ 00260 00261 } /* ctbt03_ */